基于LSTM自动生成中文藏头诗

基于LSTM自动生成中文藏头诗

    • 一、 数据读入
    • 二、数据预处理
        • 1.对数据进行从字符到正整数的映射,并加以截断/补齐操作。
        • 2.提取因变量与自变量
        • 3.one-hot编码
    • 三、构建深度神经网络模型
    • 四、模型的训练及测试

与RNN神经元一样,LSTM神经元在其管道中可以保持记忆,以允许解决顺序和时间问题,而不会出现影响其性能的消失梯度问题。

使用古诗数据集,利用LSTM神经网络模型训练自动生成中文藏头诗。

import pandas as pd
import string
import numpy as np
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import Sequential     
from tensorflow.keras.layers import Embedding,LSTM,Dense,Activation
from tensorflow.keras import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.models import load_model
import tensorflow
tensorflow.__version__
'2.7.0'

一、 数据读入

import pandas as pd
poems_text = pd.read_table('poems.txt', header=None)
poems_text.columns = ["text"]
poems_text.head()
text
0 答李司户夔:远方来下客 輶轩摄使臣 弄琴宜在夜 倾酒贵逢春 驷马留孤馆 双鱼赠故人 明朝散云...
1 寄天台司马道士:卧来生白发 览镜忽成丝 远愧餐霞子 童颜且自持 旧游惜疏旷 微尚日磷缁 不寄...
2 使往天平军马约与陈子昂新乡为期,及还而不相遇:入卫期之子 吁嗟不少留 情人去何处 淇水日悠悠...
3 过函谷关:二百四十载 海内何纷纷 六国兵同合 七雄势未分 从成拒秦帝 策决问苏君 鸡鸣将狗盗...
4 送朔方何侍郎:闻道云中使 乘骢往复还 河兵守阳月 塞虏失阴山 拜职尝随骠 铭功不让班 旋闻受...

中文古诗数据集(poems.txt)中含有15374首常用古代诗词,首先逐行读取txt文本数据,去除标题并进行文本补齐操作,将诗句分割成单个汉字组成的字符串存储在列表中。

import string
import numpy as np

f = open('poems.txt',"r",encoding='utf-8')
poems = []
for line in f.readlines():
    title,poem = line.split(':')
    poem = poem.replace(' ','')
    poem = poem.replace('\n','')
    poems.append(list(poem))

print(poems[0][:])

以第一首诗句为例,输出处理后的第一条数据:
[‘远’, ‘方’, ‘来’, ‘下’, ‘客’, ‘輶’, ‘轩’, ‘摄’, ‘使’, ‘臣’, ‘弄’, ‘琴’, ‘宜’, ‘在’, ‘夜’, ‘倾’, ‘酒’, ‘贵’, ‘逢’, ‘春’, ‘驷’, ‘马’, ‘留’, ‘孤’, ‘馆’, ‘双’, ‘鱼’, ‘赠’, ‘故’, ‘人’, ‘明’, ‘朝’, ‘散’, ‘云’, ‘雨’, ‘遥’, ‘仰’, ‘德’, ‘为’, ‘邻’]

二、数据预处理

1.对数据进行从字符到正整数的映射,并加以截断/补齐操作。

从字符到正整数的映射
from keras.preprocessing.sequence import pad_sequences命令因第三方库的版本问题易出现报错,可在keras前加上tensorflow修正。
Tokenizer类允许使用两种方法向量化一个文本语料库: 将每个文本转化为一个整数序列(每个整数都是词典中标记的索引); 或者将其转化为一个向量,其中每个标记的系数可以是二进制值、词频、TF-IDF权重等。

from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences

tokenizer = Tokenizer()
tokenizer.fit_on_texts(poems)
vocab_size=len(tokenizer.word_index)+1
poems_digit = tokenizer.texts_to_sequences(poems)
poems_digit = pad_sequences(poems_digit,maxlen=50,padding='post')
poems_digit[0]

texts_to_sequences(poems)方法可将诗句文本列表转为序列的列表,列表中每个序列对应于一段输入文本。
pad_sequences可将多个序列截断或补齐为相同长度。此处设置序列最大长度(maxlen)为50,在序列后端补齐(post)。
编码+补全后的结果:

array([  46,  171,   12,   40,   29, 3342,  528, 3176,  322,  592,  774,
        352,  608,   44,   23,  648,   73,  593,  158,    8, 2020,   92,
        188,  149,  548,  268,  305,  740,  114,    2,   61,   93,  333,
          9,   45,  201, 1352,  781,   43,  491,    0,    0,    0,    0,
          0,    0,    0,    0,    0,    0])

2.提取因变量与自变量

X=poems_digit[:,:-1]
Y=poems_digit[:,1:]
X示例 Y示例
46 171
171 12
12 40
40 29
29 3342
3342 528

3.one-hot编码

one-hot编码是将类别变量转换为深度学习算法易于利用的一种形式的过程。运用to_categorical函数将类别向量转换为二进制的矩阵类型表示。在得到相应的embedding之后,可以送入到深度学习模型中进行后续处理。

# from keras.utils import to_categorical
from tensorflow.keras.utils import to_categorical
Y = to_categorical(Y,num_classes=vocab_size)
print(Y.shape)
(15374, 49, 5040)

三、构建深度神经网络模型

keras.layers各种层介绍https://www.cnblogs.com/lhxsoft/p/13534667.html

Keras中主要的模型是Sequential模型,Sequential是一系列网络层按顺序构成的栈,将一些网络层通过.add()堆叠起来,就构成了一个模型。
 嵌入层Embedding定义一个词典为vocab_size=5040的嵌入层,一个hidden_size1=128维的向量空间, 输入序列长度为49。
 LSTM层设置输出空间的维度为64
 全连接层Dense设置输出维度为5040
 激活层Activation对一个层的输出施加激活函数

from tensorflow.keras.models import Sequential     
from tensorflow.keras.layers import Embedding,LSTM,Dense,Activation
from tensorflow.keras import Model

hidden_size1=128
hidden_size2=64
# 将一些网络层通过.add()堆叠起来,就构成了一个模型
model = Sequential()
model.add(Embedding(input_dim=vocab_size,output_dim=hidden_size1,input_length=49,mask_zero=True))
#  将输入中的‘0’看作是应该被忽略的‘填充’(padding)值
model.add(LSTM(hidden_size2,return_sequences=True))
model.add(Dense(vocab_size))
model.add(Activation('softmax'))

model.summary()
Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 embedding (Embedding)       (None, 49, 128)           645120    
                                                                 
 lstm (LSTM)                 (None, 49, 64)            49408     
                                                                 
 dense (Dense)               (None, 49, 5040)          327600    
                                                                 
 activation (Activation)     (None, 49, 5040)          0         
                                                                 
=================================================================
Total params: 1,022,128
Trainable params: 1,022,128
Non-trainable params: 0
_________________________________________________________________

四、模型的训练及测试

完成模型的搭建后,需要使用.compile()方法来编译模型,并按batch进行一定次数的迭代训练,以拟合网络。
编译模型时必须指明损失函数和优化器

from tensorflow.keras.optimizers import Adam
model.compile(loss='categorical_crossentropy',optimizer=Adam(lr=0.01),metrics=['accuracy'])
model.fit(X,Y,epochs=10,batch_size=64,validation_split=0.2)
D:\Anaconda\Anaconda3\Lib\site-packages\keras\optimizer_v2\adam.py:105: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.
  super(Adam, self).__init__(name, **kwargs)
Epoch 1/10
193/193 [==============================] - 60s 298ms/step - loss: 4.7847 - accuracy: 0.0301 - val_loss: 4.6860 - val_accuracy: 0.0337
Epoch 2/10
193/193 [==============================] - 56s 290ms/step - loss: 4.5226 - accuracy: 0.0480 - val_loss: 4.5059 - val_accuracy: 0.0552
Epoch 3/10
193/193 [==============================] - 59s 306ms/step - loss: 4.3119 - accuracy: 0.0724 - val_loss: 4.3876 - val_accuracy: 0.0719
Epoch 4/10
193/193 [==============================] - 60s 309ms/step - loss: 4.1503 - accuracy: 0.0889 - val_loss: 4.3279 - val_accuracy: 0.0798
Epoch 5/10
193/193 [==============================] - 59s 304ms/step - loss: 4.0391 - accuracy: 0.0986 - val_loss: 4.3107 - val_accuracy: 0.0838
Epoch 6/10
193/193 [==============================] - 58s 299ms/step - loss: 3.9588 - accuracy: 0.1041 - val_loss: 4.3057 - val_accuracy: 0.0860
Epoch 7/10
193/193 [==============================] - 56s 290ms/step - loss: 3.8951 - accuracy: 0.1090 - val_loss: 4.3062 - val_accuracy: 0.0872
Epoch 8/10
193/193 [==============================] - 56s 291ms/step - loss: 3.8426 - accuracy: 0.1130 - val_loss: 4.3138 - val_accuracy: 0.0879
Epoch 9/10
193/193 [==============================] - 56s 291ms/step - loss: 3.7964 - accuracy: 0.1173 - val_loss: 4.3226 - val_accuracy: 0.0881
Epoch 10/10
193/193 [==============================] - 56s 290ms/step - loss: 3.7565 - accuracy: 0.1208 - val_loss: 4.3346 - val_accuracy: 0.0887
  

保存模型

model.save('Poetry_LSTM.h5')

加载模型

from tensorflow.keras.models import load_model
model = load_model('Poetry_LSTM.h5')

加载训练好的模型,输入“诗头”,写藏头诗。

poem_incomplete='雨****轩****可****爱****'
poem_index=[]
poem_text=''
for i in range(len(poem_incomplete)):
    current_word=poem_incomplete[i]
    
    if current_word !='*':
        index=tokenizer.word_index[current_word]
        
    else:
        x=np.expand_dims(poem_index,axis=0)
        x=pad_sequences(x,maxlen=49,padding='post')
        y=model.predict(x)[0,i]
        
        y[0]=0
        index=y.argmax()
        current_word=tokenizer.index_word[index]
        
    poem_index.append(index)
    poem_text=poem_text+current_word
    
poem_text=poem_text[0:]
print(poem_text[0:5])
print(poem_text[5:10])
print(poem_text[10:15])
print(poem_text[15:20])
雨滴清风吹
轩树风吹笛
可怜一曲不
爱此时人不

你可能感兴趣的:(笔记,lstm,keras,深度学习,自然语言处理,神经网络)