Deep learning:二十二(linear decoder练习)

 

  前言:

  本节是练习Linear decoder的应用,关于Linear decoder的相关知识介绍请参考:Deep learning:十七(Linear DecodersConvolutionPooling),实验步骤参考Exercise: Implement deep networks for digit classification。本次实验是用linear decoder的sparse autoencoder来训练出stl-10数据库图片的patch特征。并且这次的训练权值是针对rgb图像块的。

 

  基础知识:

  PCA Whitening是保证数据各维度的方差为1,而ZCA Whitening是保证数据各维度的方差相等即可,不一定要唯一。并且这两种whitening的一般用途也不一样,PCA Whitening主要用于降维且去相关性,而ZCA Whitening主要用于去相关性,且尽量保持原数据。

  Matlab的一些知识:

  函数句柄的好处就是把一个函数作为参数传入到本函数中,在该函数内部可以利用该函数进行各种运算得出最后需要的结果,比如说函数中要用到各种求导求积分的方法,如果是传入该函数经过各种运算后的值的话,那么在调用该函数前就需要不少代码,这样比较累赘,所以采用函数句柄后这些代码直接放在了函数内部,每调用一次无需在函数外面实现那么多的东西。

  Matlab中保存各种数据时可以采用save函数,并将其保持为.mat格式的,这样在matlab的current folder中看到的是.mat格式的文件,但是直接在文件夹下看,它是不直接显示后缀的,且显示的是Microsoft Access Table Shortcut,也就是.mat的简称。

  关于实验的一些说明:

  在Ng的教程和实验中,它的输入样本矩阵是每一列代表一个样本的,列数为样本的总个数。

  matlab中矩阵64*10w大小肯定是可以的。

  在本次实验中,ZCA Whitening是针对patches进行的,且patches的均值化是对每一维进行的(感觉这种均值化比较靠谱,前面有文章是进行对patch中一个样本求均值,感觉那样很不靠谱,不过那是在natural image中做的,因为natural image每一维的统计特性都一样,所以可以那样均值化,但还是感觉不太靠谱)。因为使用的是ZCA whitening,所以新的向量并没有进行降维,只是去了相关性和让每一维的方差都相等而已。另外,由此可见,在进行数据Whitening时并不需要对原始的大图片进行whitening,而是你用什么数据输入网络去训练就对什么数据进行whitening,而这里,是用的小patches来训练的,所以应该对小patches进行whitening。

  关于本次实验的一些数据和变量分配如下:

  总共需训练的样本矩阵大小为192*100000。因为输入训练的一个patch大小为8*8的,所以网络的输入层节点数为192(=8*8*3,因为是3通道的,每一列按照rgb的顺序排列),另外本次试验的隐含层个数为400,权值惩罚系数为0.003,稀疏性惩罚系数为5,稀疏性体现在3.5%的隐含层节点被激发。ZCA白化时分母加上0.1的值防止出现大的数值。

  用的是Linear decoder,所以最后的输出层的激发函数为1,即输出和输入相等。这样在问题内部的计算量变小了点。

  程序中最后需要把学习到的网络权值给显示出来,不过这个显示的内容已经包括了whitening部分了,所以是whitening和sparse autoencoder的组合。程序中显示用的是displayColorNetwork( (W*ZCAWhite)');

  这里为什么要用(W*ZCAWhite)'呢?首先,使用W*ZCAWhite是因为每个样本x输入网络,其输出等价于W*ZCAWhite*x;另外,由于W*ZCAWhite的每一行才是一个隐含节点的变换值,而displayColorNetwork函数是把每一列显示一个小图像块的,所以需要对其转置。

 

  实验结果:

  原始图片截图:

   Deep learning:二十二(linear decoder练习)

  ZCA Whitening后截图;

   Deep learning:二十二(linear decoder练习)

  学习到的400个特征显示如下:

   Deep learning:二十二(linear decoder练习)

 

  实验主要部分代码:

%% CS294A/CS294W Linear Decoder Exercise



%  Instructions

%  ------------

% 

%  This file contains code that helps you get started on the

%  linear decoder exericse. For this exercise, you will only need to modify

%  the code in sparseAutoencoderLinearCost.m. You will not need to modify

%  any code in this file.



%%======================================================================

%% STEP 0: Initialization

%  Here we initialize some parameters used for the exercise.



imageChannels = 3;     % number of channels (rgb, so 3)



patchDim   = 8;          % patch dimension

numPatches = 100000;   % number of patches



visibleSize = patchDim * patchDim * imageChannels;  % number of input units 

outputSize  = visibleSize;   % number of output units

hiddenSize  = 400;           % number of hidden units %中间的隐含层还变多了



sparsityParam = 0.035; % desired average activation of the hidden units.

lambda = 3e-3;         % weight decay parameter       

beta = 5;              % weight of sparsity penalty term       



epsilon = 0.1;           % epsilon for ZCA whitening



%%======================================================================

%% STEP 1: Create and modify sparseAutoencoderLinearCost.m to use a linear decoder,

%          and check gradients

%  You should copy sparseAutoencoderCost.m from your earlier exercise 

%  and rename it to sparseAutoencoderLinearCost.m. 

%  Then you need to rename the function from sparseAutoencoderCost to

%  sparseAutoencoderLinearCost, and modify it so that the sparse autoencoder

%  uses a linear decoder instead. Once that is done, you should check 

% your gradients to verify that they are correct.



% NOTE: Modify sparseAutoencoderCost first!



% To speed up gradient checking, we will use a reduced network and some

% dummy patches



debugHiddenSize = 5;

debugvisibleSize = 8;

patches = rand([8 10]);%随机产生10个样本,每个样本为一个8维的列向量,元素值为0~1

theta = initializeParameters(debugHiddenSize, debugvisibleSize); 



[cost, grad] = sparseAutoencoderLinearCost(theta, debugvisibleSize, debugHiddenSize, ...

                                           lambda, sparsityParam, beta, ...

                                           patches);



% Check gradients

numGrad = computeNumericalGradient( @(x) sparseAutoencoderLinearCost(x, debugvisibleSize, debugHiddenSize, ...

                                                  lambda, sparsityParam, beta, ...

                                                  patches), theta);



% Use this to visually compare the gradients side by side

disp([numGrad cost]); 



diff = norm(numGrad-grad)/norm(numGrad+grad);

% Should be small. In our implementation, these values are usually less than 1e-9.

disp(diff); 



assert(diff < 1e-9, 'Difference too large. Check your gradient computation again');



% NOTE: Once your gradients check out, you should run step 0 again to

%       reinitialize the parameters

%}



%%======================================================================

%% STEP 2: Learn features on small patches

%  In this step, you will use your sparse autoencoder (which now uses a 

%  linear decoder) to learn features on small patches sampled from related

%  images.



%% STEP 2a: Load patches

%  In this step, we load 100k patches sampled from the STL10 dataset and

%  visualize them. Note that these patches have been scaled to [0,1]



load stlSampledPatches.mat



displayColorNetwork(patches(:, 1:100));



%% STEP 2b: Apply preprocessing

%  In this sub-step, we preprocess the sampled patches, in particular, 

%  ZCA whitening them. 

% 

%  In a later exercise on convolution and pooling, you will need to replicate 

%  exactly the preprocessing steps you apply to these patches before 

%  using the autoencoder to learn features on them. Hence, we will save the

%  ZCA whitening and mean image matrices together with the learned features

%  later on.



% Subtract mean patch (hence zeroing the mean of the patches)

meanPatch = mean(patches, 2);  %注意这里减掉的是每一维属性的均值,为什么会和其它的不同呢?

patches = bsxfun(@minus, patches, meanPatch);%每一维都均值化



% Apply ZCA whitening

sigma = patches * patches' / numPatches;

[u, s, v] = svd(sigma);

ZCAWhite = u * diag(1 ./ sqrt(diag(s) + epsilon)) * u';%求出ZCAWhitening矩阵

patches = ZCAWhite * patches;

figure

displayColorNetwork(patches(:, 1:100));



%% STEP 2c: Learn features

%  You will now use your sparse autoencoder (with linear decoder) to learn

%  features on the preprocessed patches. This should take around 45 minutes.



theta = initializeParameters(hiddenSize, visibleSize);



% Use minFunc to minimize the function

addpath minFunc/



options = struct;

options.Method = 'lbfgs'; 

options.maxIter = 400;

options.display = 'on';



[optTheta, cost] = minFunc( @(p) sparseAutoencoderLinearCost(p, ...

                                   visibleSize, hiddenSize, ...

                                   lambda, sparsityParam, ...

                                   beta, patches), ...

                              theta, options);%注意它的参数



% Save the learned features and the preprocessing matrices for use in 

% the later exercise on convolution and pooling

fprintf('Saving learned features and preprocessing matrices...\n');                          

save('STL10Features.mat', 'optTheta', 'ZCAWhite', 'meanPatch');

fprintf('Saved\n');



%% STEP 2d: Visualize learned features



W = reshape(optTheta(1:visibleSize * hiddenSize), hiddenSize, visibleSize);

b = optTheta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);

figure;

%这里为什么要用(W*ZCAWhite)'呢?首先,使用W*ZCAWhite是因为每个样本x输入网络,

%其输出等价于W*ZCAWhite*x;另外,由于W*ZCAWhite的每一行才是一个隐含节点的变换值

%而displayColorNetwork函数是把每一列显示一个小图像块的,所以需要对其转置。

displayColorNetwork( (W*ZCAWhite)');

 

 sparseAutoencoderLinearCost.m:

function [cost,grad] = sparseAutoencoderLinearCost(theta, visibleSize, hiddenSize, ...

                                                            lambda, sparsityParam, beta, data)

% -------------------- YOUR CODE HERE --------------------

% Instructions:

%   Copy sparseAutoencoderCost in sparseAutoencoderCost.m from your

%   earlier exercise onto this file, renaming the function to

%   sparseAutoencoderLinearCost, and changing the autoencoder to use a

%   linear decoder.

% -------------------- YOUR CODE HERE --------------------                                    

% The input theta is a vector because minFunc only deal with vectors. In

% this step, we will convert theta to matrix format such that they follow

% the notation in the lecture notes.

W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);

W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize);

b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);

b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end);



% Loss and gradient variables (your code needs to compute these values)

m = size(data, 2);%样本点的个数



%% ---------- YOUR CODE HERE --------------------------------------

%  Instructions: Compute the loss for the Sparse Autoencoder and gradients

%                W1grad, W2grad, b1grad, b2grad

%

%  Hint: 1) data(:,i) is the i-th example

%        2) your computation of loss and gradients should match the size

%        above for loss, W1grad, W2grad, b1grad, b2grad



% z2 = W1 * x + b1

% a2 = f(z2)

% z3 = W2 * a2 + b2

% h_Wb = a3 = f(z3)



z2 = W1 * data + repmat(b1, [1, m]);

a2 = sigmoid(z2);

z3 = W2 * a2 + repmat(b2, [1, m]);

a3 = z3;



rhohats = mean(a2,2);

rho = sparsityParam;

KLsum = sum(rho * log(rho ./ rhohats) + (1-rho) * log((1-rho) ./ (1-rhohats)));





squares = (a3 - data).^2;

squared_err_J = (1/2) * (1/m) * sum(squares(:));

weight_decay_J = (lambda/2) * (sum(W1(:).^2) + sum(W2(:).^2));

sparsity_J = beta * KLsum;



cost = squared_err_J + weight_decay_J + sparsity_J;%损失函数值



% delta3 = -(data - a3) .* fprime(z3);

% but fprime(z3) = a3 * (1-a3)

delta3 = -(data - a3);

beta_term = beta * (- rho ./ rhohats + (1-rho) ./ (1-rhohats));

delta2 = ((W2' * delta3) + repmat(beta_term, [1,m]) ) .* a2 .* (1-a2);



W2grad = (1/m) * delta3 * a2' + lambda * W2;

b2grad = (1/m) * sum(delta3, 2);

W1grad = (1/m) * delta2 * data' + lambda * W1;

b1grad = (1/m) * sum(delta2, 2);



%-------------------------------------------------------------------

% Convert weights and bias gradients to a compressed form

% This step will concatenate and flatten all your gradients to a vector

% which can be used in the optimization method.

grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)];



end

%-------------------------------------------------------------------

% We are giving you the sigmoid function, you may find this function

% useful in your computation of the loss and the gradients.

function sigm = sigmoid(x)



    sigm = 1 ./ (1 + exp(-x));

end

 

  参考资料:

     Deep learning:十七(Linear DecodersConvolutionPooling)

     Exercise: Implement deep networks for digit classification

 

 

 

 

 

你可能感兴趣的:(decode)