Python大作业——爬虫+可视化+数据分析+数据库(爬虫篇)

相关链接

Python大作业——爬虫+可视化+数据分析+数据库(简介篇)

Python大作业——爬虫+可视化+数据分析+数据库(可视化篇)

Python大作业——爬虫+可视化+数据分析+数据库(数据分析篇)

Python大作业——爬虫+可视化+数据分析+数据库(数据库篇)

Python大作业——爬虫+可视化+数据分析+数据库(爬虫篇)_第1张图片

以上是这次大作业的大致内容,可以看到其中需要爬虫实现的主要有三个方面:

  1. 根据搜索内容爬取搜索结果的信息(包括歌词)
  2. 爬取热门歌曲
  3. 爬取热门歌手及其歌曲

一、根据搜索内容爬取搜索结果的信息

获得具体歌曲网址

这个部分我们爬取的网站地址为:https://www.8lrc.com/search

尝试在这个页面进行搜索后我们很容易发现**,搜素框输入的结果直接作为get请求的参数,键为‘key’**

在这里插入图片描述

那么就很简单了,我们通过在界面搜索框的回车事件绑定爬虫函数,将搜索框中的内容作为参数传给函数,之后将参数拼接到https://www.8lrc.com/search后面并发送get请求即可得到响应体

随后使用BeautifulSoup中的html解析器对响应体文本进行解析

接下来通过f12查看页面元素

Python大作业——爬虫+可视化+数据分析+数据库(爬虫篇)_第2张图片

我们会发现,查询到的每首歌曲的跳转信息都在一个类名为”tGequ“的a标签里

那么我们就可以使用findAll函数获得所有歌曲的a标签

def search(self, keyword):
    self.play_index_now = -1  # 每次重新搜索都将当前播放序号设置为-1
    urlbase = r'https://www.8lrc.com/search'  # 搜索的基础地址
    params = {'key': keyword}  # 封装搜索的参数
    res_body = requests.get(urlbase, params)  # 拼接url,发送请求
    soup_body = BeautifulSoup(res_body.text, 'html.parser')  # html解析获得响应文本
    self.tags = soup_body.findAll(class_='tGequ')  # 得到查询结果

通过tag[‘href’]即可得到其中的href属性值

由于这是一个相对地址,只要在前面加上baseurl:https://www.8lrc.com即可得到对应歌曲的链接

获取歌曲音频资源及歌词

接着我们访问具体歌曲如https://www.8lrc.com/geci/1130167.htm,希望获得其歌曲的资源以及歌词

同样打开开发者工具,可以发现在第四个script标签中的setPlayer函数里有一个url地址,且其以.mp3为后缀,结合这是一个播放器,我们不难想到这就是歌曲的音频资源,而下面的显然就是我们所需要的歌曲的歌词

知道了这些以后,就可以开始爬虫获取了

首先我们通过soup_body.select("body script")[3].get_text()语句获得这个script标签的文本

通过观察,url地址都是以”url“:"为起始,以引号"作为结束,所以我们不难写出匹配url地址的正则表达式r'"url":"([^"]*)"'

括号中的内容即我们希望获得的mp3资源

通过re.search(pattern1, script).group(1)语句即可获得括号中的内容

由于获得的地址中会有转义字符/,所以我们需要replace(r'\/', '/')将其置换为/

Python大作业——爬虫+可视化+数据分析+数据库(爬虫篇)_第3张图片

def get_song_detail(self, keyword):  # 呈现搜索结果于界面
    result = r'https://www.8lrc.com'  # 搜索结果的基础地址
    pattern = r'(.*) - (.*)'  # 得到歌名的正则表达式
    pattern1 = r'"url":"([^"]*)"'  # 得到歌曲资源的正则表达式
    self.keyword = keyword
    self.names = []
    self.musics = []
    self.lyric = []
    self.num = 0
    for tag in self.tags[0:]:
        if re.match(pattern, tag.text):
            res_body = requests.get(result + tag['href'])
            soup_body = BeautifulSoup(res_body.text, 'html.parser')
            if soup_body.text.__contains__("404"): continue
            script = soup_body.select("body script")[3].get_text()
            pre_music = re.search(pattern1, script).group(1)
            self.names.append(re.split(pattern, tag.text)[1])  # 获取歌名
            self.musics.append(pre_music.replace(r'\/', '/'))  # 获取歌曲资源
            self.num = self.num+1
    self.song_show()

此处会有可能会出现一个问题,就是通过第一步获得的歌曲网址未必能打开,有的歌曲没有版权所以访问会出现404的情况,为了避免程序报错,我们需要跳过404的页面,所以有语句:if soup_body.text.__contains__("404"): continue

歌词方面同上都是先写出正则表达式,然后匹配得到结果,此处便不再演示,需要注意的是得到的歌词都带着\r\n字符,这显然不是我们所希望的,所以我们使用lyric.replace(r'\r\n', '\n')语句将这些字符转换为换行符,即可实现每句歌词占一行

二、爬取热门歌曲

这个部分我们爬取的网站地址为:http://m.yue365.com/bang/box100_w.shtml

步骤与上文无太大差别

值得一提的是该网站使用的编码是’gb2312’,而我们的编译器一般默认编码是utf-8,所以会出现乱码的情况

Python大作业——爬虫+可视化+数据分析+数据库(爬虫篇)_第4张图片

所以我们应该对获得的响应体设置编码

对于获取到的数据,我们采用excel存储

首先使用xlsxwriter.Workbook('popsongs.xlsx')创建一个名为popsongs的excel文件,可以再参数中设置格式,也可以利用add_format()创建格式

随后创建一个表单workbook.add_worksheet('pop500')命名为pop500,并使用 worksheet.set_column()设置列宽(第一个参数为起始列,第二个参数为终止列,第三个参数为长度,行数列数都从0开始)

之后就可以使用worksheet.write_row(row, 0, ['排名', '歌名', '歌曲url', '歌曲热度'], first_format)对每一行写入数据了,第一个参数为目标行,第二个参数为起始列,第三个参数为写入的值,从起始列开始写入列表中的值,第四个参数为之前所创建的格式

最后记得关闭excel文件,便大功告成了

def pop_songs(self):
    row = 0
    base = 'http://m.yue365.com/'
    url = 'http://m.yue365.com/bang/box100_w.shtml'
    pattern = r'width:(.*)%'
    self.hot = []
    res_body = requests.get(url)
    res_body.encoding = 'gb2312'
    soup_body = BeautifulSoup(res_body.text, 'lxml')
    songs = soup_body.findAll(class_='name')
    hot = soup_body.findAll('span', class_='dib')
    workbook = xlsxwriter.Workbook('popsongs.xlsx')
    first_format = workbook.add_format({'align': 'center'})
    second_format = workbook.add_format({'align': 'left'})
    worksheet = workbook.add_worksheet('pop500')
    worksheet.set_column(0, 0, 6)
    worksheet.set_column(1, 1, 20)
    worksheet.set_column(2, 2, 46)
    worksheet.set_column(3, 3, 10)
    worksheet.write_row(row, 0, ['排名', '歌名', '歌曲url', '歌曲热度'], first_format)
    for song in songs:
        self.hot.append(re.split(pattern, hot[row*2+1]['style'])[1])
        row += 1
        song_url = base+song.a['href']
        worksheet.write_row(row, 0, [row, song.a.text, song_url, self.hot[row-1]], second_format)
    workbook.close()
    os.startfile('popsongs.xlsx')

使用os.startfile('popsongs.xlsx')在写完数据后自动打开文件

三、爬取热门歌手及其歌曲

这个部分我们爬取的网站地址为:https://www.9ku.com/geshou/all-all-liuxing.htm

值得一提的是使用songs = soup_body.findAll(class_="songNameA")最后会多获取到一些我们不需要的数据,且都是在末尾的十八条,故通过以下代码晒去后面十八条信息

for song in songs[:-18]:
    worksheet.write_row(row, 0, [song.text, url_base+song['href'], url_base+lyrics[row-1]['href']])
    row += 1

结果如下Python大作业——爬虫+可视化+数据分析+数据库(爬虫篇)_第5张图片

你可能感兴趣的:(python,爬虫,python,正则表达式)