大数据电商离线数仓项目-下篇

上一篇:电商数仓系统1

文章目录

  • 第5章 数仓搭建-DWS层
    • 5.1 业务术语
    • 5.2 系统函数
      • 5.2.1 nvl函数
      • 5.2.2 日期处理函数
      • 5.2.3 复杂数据类型定义
    • 5.3 DWS层
      • 5.3.1 每日设备行为
      • 5.3.2 每日会员行为
      • 5.3.3 每日商品行为
      • 5.3.4 每日活动统计
      • 5.3.5 每日地区统计
    • 5.4 DWS层数据导入脚本
  • 第6章 数仓搭建-DWT层
    • 6.1 设备主题宽表
    • 6.2 会员主题宽表
    • 6.3 商品主题宽表
    • 6.4 活动主题宽表
    • 6.5 地区主题宽表
    • 6.6 DWT层数据导入脚本
  • 第7章 数仓搭建-ADS层
    • 7.1 新数据生成
    • 7.2 设备主题
      • 7.2.1 活跃设备数(日、周、月)
      • 7.2.2 每日新增设备
      • 7.2.3 留存率
      • 7.2.4 沉默用户数
      • 7.2.5 本周回流用户数
      • 7.2.6 流失用户数
      • 7.2.7 最近连续三周活跃用户数
      • 7.2.8 最近七天内连续三天活跃用户数
    • 7.3 会员主题
      • 7.3.1 会员信息
      • 7.3.2 漏斗分析
    • 7.4 商品主题
      • 7.4.1 商品个数信息
      • 7.4.2 商品销量排名
      • 7.4.3 商品收藏排名
      • 7.4.4 商品加入购物车排名
      • 7.4.5 商品退款率排名(最近30天)
      • 7.4.6 商品差评率
    • 7.5 营销主题(用户+商品+购买行为)
      • 7.5.1 下单数目统计
      • 7.5.2 支付信息统计
      • 7.5.3 品牌复购率
    • 7.6 地区主题
      • 7.6.1 地区主题信息
    • 7.7 ADS层导入脚本
  • 第8章 Azkaban调度
    • 8.1 Azkaban部署
    • 8.2 创建MySQL数据库和表
    • 8.3 Sqoop导出脚本
    • 8.4 会员主题指标获取的全调度流程
      • 8.4.1 数据准备
      • 8.4.2 编译写Azkaban工作流程配置文件
      • 8.4.3 Azkaban多Executor模式下注意事项

第5章 数仓搭建-DWS层

5.1 业务术语

1)用户

用户以设备为判断标准,在移动统计中,每个独立设备认为是一个独立用户。Android系统根据IMEI号,IOS系统根据OpenUDID来标识一个独立用户,每部手机一个用户。

2)新增用户

首次联网使用应用的用户。如果一个用户首次打开某APP,那这个用户定义为新增用户;卸载再安装的设备,不会被算作一次新增。新增用户包括日新增用户、周新增用户、月新增用户。

3)活跃用户

打开应用的用户即为活跃用户,不考虑用户的使用情况。每天一台设备打开多次会被计为一个活跃用户。

4)周(月)活跃用户

某个自然周(月)内启动过应用的用户,该周(月)内的多次启动只记一个活跃用户。

5)月活跃率

月活跃用户与截止到该月累计的用户总和之间的比例。

6)沉默用户

用户仅在安装当天(次日)启动一次,后续时间无再启动行为。该指标可以反映新增用户质量和用户与APP的匹配程度。

7)版本分布

不同版本的周内各天新增用户数,活跃用户数和启动次数。利于判断APP各个版本之间的优劣和用户行为习惯。

8)本周回流用户

上周未启动过应用,本周启动了应用的用户。

9)连续n周活跃用户

连续n周,每周至少启动一次。

10)忠诚用户

连续活跃5周以上的用户

11)连续活跃用户

连续2周及以上活跃的用户

12)近期流失用户

连续n(2<= n <= 4)周没有启动应用的用户。(第n+1周没有启动过)

13)留存用户

某段时间内的新增用户,经过一段时间后,仍然使用应用的被认作是留存用户;这部分用户占当时新增用户的比例即是留存率。

例如,5月份新增用户200,这200人在6月份启动过应用的有100人,7月份启动过应用的有80人,8月份启动过应用的有50人;则5月份新增用户一个月后的留存率是50%,二个月后的留存率是40%,三个月后的留存率是25%。

14)用户新鲜度

每天启动应用的新老用户比例,即新增用户数占活跃用户数的比例。

15)单次使用时长

每次启动使用的时间长度。

16)日使用时长

累计一天内的使用时间长度。

17)启动次数计算标准

IOS平台应用退到后台就算一次独立的启动;Android平台我们规定,两次启动之间的间隔小于30秒,被计算一次启动。用户在使用过程中,若因收发短信或接电话等退出应用30秒又再次返回应用中,那这两次行为应该是延续而非独立的,所以可以被算作一次使用行为,即一次启动。业内大多使用30秒这个标准,但用户还是可以自定义此时间间隔。

5.2 系统函数

5.2.1 nvl函数

1)基本语法

NVL(表达式1,表达式2)

如果表达式1为空值,NVL返回值为表达式2的值,否则返回表达式1的值。

该函数的目的是把一个空值(null)转换成一个实际的值。其表达式的值可以是数字型、字符型和日期型。但是表达式1和表达式2的数据类型必须为同一个类型。

2)案例实操

hive (gmall)> select nvl(1,0);
1

hive (gmall)> select nvl(null,"hello");
hello

5.2.2 日期处理函数

1)date_format函数(根据格式整理日期)

hive (gmall)> select date_format('2021-01-28','yyyy-MM');
2021-01

2)date_add函数(加减日期)

hive (gmall)> select date_add('2021-01-28',-1);
2021-01-27
hive (gmall)> select date_add('2021-01-28',1);
2021-01-29

3)next_day函数

​ (1)取当前天的下一个周一

select next_day('2021-01-28','MO');
2021-02-01

说明:星期一到星期日的英文(Monday,Tuesday、Wednesday、Thursday、Friday、Saturday、Sunday)

(2)取当前周的周一

hive (gmall)> select date_add(next_day('2021-01-28','MO'),-7);
2021-01-15

4)last_day函数(求当月最后一天日期)

select last_day('2021-01-28');
2021-01-31

5.2.3 复杂数据类型定义

1)map结构数据定义

map<string,string>

2)array结构数据定义

array<string>

3)struct结构数据定义

struct<id:int,name:string,age:int>

4)struct和array嵌套定义

array<struct<id:int,name:string,age:int>>

5.3 DWS层

DWS层宽表及宽表字段设计详见2.4.3。

5.3.1 每日设备行为

每日设备行为,主要按照设备id统计。

大数据电商离线数仓项目-下篇_第1张图片

1)建表语句

hive (gmall)> 
drop table if exists dws_uv_detail_daycount;
create external table dws_uv_detail_daycount
(
    `mid_id`      string COMMENT '设备id',
    `brand`       string COMMENT '手机品牌',
    `model`       string COMMENT '手机型号',
    `login_count` bigint COMMENT '活跃次数',
    `page_stats`  array<struct<page_id:string,page_count:bigint>> COMMENT '页面访问统计'
) COMMENT '每日设备行为表'
partitioned by(dt string)
stored as parquet
location '/warehouse/gmall/dws/dws_uv_detail_daycount'
tblproperties ("parquet.compression"="lzo");

2)数据装载

hive (gmall)> 
with
tmp_start as
(
    select  
        mid_id,
        brand,
        model,
        count(*) login_count
    from dwd_start_log
    where dt='2021-01-28'
    group by mid_id,brand,model
),
tmp_page as
(
    select
        mid_id,
        brand,
        model,        
        collect_set(named_struct('page_id',page_id,'page_count',page_count)) page_stats
    from
    (
        select
            mid_id,
            brand,
            model,
            page_id,
            count(*) page_count
        from dwd_page_log
        where dt='2021-01-28'
        group by mid_id,brand,model,page_id
    )tmp
    group by mid_id,brand,model
)
insert overwrite table dws_uv_detail_daycount partition(dt='2021-01-28')
select
    nvl(tmp_start.mid_id,tmp_page.mid_id),
    nvl(tmp_start.brand,tmp_page.brand),
    nvl(tmp_start.model,tmp_page.model),
    tmp_start.login_count,
    tmp_page.page_stats
from tmp_start 
full outer join tmp_page
on tmp_start.mid_id=tmp_page.mid_id
and tmp_start.brand=tmp_page.brand
and tmp_start.model=tmp_page.model;

3)查询加载结果

hive (gmall)> 
select * from dws_uv_detail_daycount where dt='2021-01-28' limit 2;

5.3.2 每日会员行为

1)建表语句

hive (gmall)> 
drop table if exists dws_user_action_daycount;
create external table dws_user_action_daycount
(   
    user_id string comment '用户 id',
    login_count bigint comment '登录次数',
    cart_count bigint comment '加入购物车次数',
    order_count bigint comment '下单次数',
    order_amount    decimal(16,2)  comment '下单金额',
    payment_count   bigint      comment '支付次数',
    payment_amount  decimal(16,2) comment '支付金额',
    order_detail_stats array<struct<sku_id:string,sku_num:bigint,order_count:bigint,order_amount:decimal(20,2)>> comment '下单明细统计'
) COMMENT '每日会员行为'
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_user_action_daycount/'
tblproperties ("parquet.compression"="lzo");

2)数据装载

大数据电商离线数仓项目-下篇_第2张图片

hive (gmall)> 
with
tmp_login as
(
    select
        user_id,
        count(*) login_count
    from dwd_start_log
    where dt='2021-01-28'
    and user_id is not null
    group by user_id
),
tmp_cart as
(
    select
        user_id,
        count(*) cart_count
    from dwd_action_log
    where dt='2021-01-28'
    and user_id is not null
    and action_id='cart_add'
    group by user_id
),
tmp_order as
(
    select
        user_id,
        count(*) order_count,
        sum(final_total_amount) order_amount
    from dwd_fact_order_info
    where dt='2021-01-28'
    group by user_id
) ,
tmp_payment as
(
    select
        user_id,
        count(*) payment_count,
        sum(payment_amount) payment_amount
    from dwd_fact_payment_info
    where dt='2021-01-28'
    group by user_id
),
tmp_order_detail as
(
    select
        user_id,
        collect_set(named_struct('sku_id',sku_id,'sku_num',sku_num,'order_count',order_count,'order_amount',order_amount)) order_stats
    from
    (
        select
            user_id,
            sku_id,
            sum(sku_num) sku_num,
            count(*) order_count,
            cast(sum(final_amount_d) as decimal(20,2)) order_amount
        from dwd_fact_order_detail
        where dt='2021-01-28'
        group by user_id,sku_id
    )tmp
    group by user_id
)
 
insert overwrite table dws_user_action_daycount partition(dt='2021-01-28')
select
    tmp_login.user_id,
    login_count,
    nvl(cart_count,0),
    nvl(order_count,0),
    nvl(order_amount,0.0),
    nvl(payment_count,0),
    nvl(payment_amount,0.0),
    order_stats
from tmp_login
left join tmp_cart on tmp_login.user_id=tmp_cart.user_id
left join tmp_order on tmp_login.user_id=tmp_order.user_id
left join tmp_payment on tmp_login.user_id=tmp_payment.user_id
left join tmp_order_detail on tmp_login.user_id=tmp_order_detail.user_id;

3)查询加载结果

hive (gmall)>
select * from dws_user_action_daycount where dt='2021-01-28' limit 2;

5.3.3 每日商品行为

1)建表语句

hive (gmall)>
drop table if exists dws_sku_action_daycount;
create external table dws_sku_action_daycount 
(   
    sku_id string comment 'sku_id',
    order_count bigint comment '被下单次数',
    order_num bigint comment '被下单件数',
    order_amount decimal(16,2) comment '被下单金额',
    payment_count bigint  comment '被支付次数',
    payment_num bigint comment '被支付件数',
    payment_amount decimal(16,2) comment '被支付金额',
    refund_count bigint  comment '被退款次数',
    refund_num bigint comment '被退款件数',
    refund_amount  decimal(16,2) comment '被退款金额',
    cart_count bigint comment '被加入购物车次数',
    favor_count bigint comment '被收藏次数',
    appraise_good_count bigint comment '好评数',
    appraise_mid_count bigint comment '中评数',
    appraise_bad_count bigint comment '差评数',
    appraise_default_count bigint comment '默认评价数'
) COMMENT '每日商品行为'
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_sku_action_daycount/'
tblproperties ("parquet.compression"="lzo"); 

2)数据装载

注意:如果是23点59下单,支付日期跨天。需要从订单详情里面取出支付时间是今天,且订单时间是昨天或者今天的订单。

hive (gmall)> 
with 
tmp_order as
(
    select
        sku_id,
        count(*) order_count,
        sum(sku_num) order_num,
        sum(final_amount_d) order_amount
    from dwd_fact_order_detail
    where dt='2021-01-28'
    group by sku_id
),
tmp_payment as
(
    select
        sku_id,
        count(*) payment_count,
        sum(sku_num) payment_num,
        sum(final_amount_d) payment_amount
    from dwd_fact_order_detail
    where dt='2021-01-28'
    and order_id in
    (
        select
           id
        from dwd_fact_order_info
        where (dt='2021-01-28'
        or dt=date_add('2021-01-28',-1))
        and date_format(payment_time,'yyyy-MM-dd')='2021-01-28'
    )
    group by sku_id
),
tmp_refund as
(
    select
        sku_id,
        count(*) refund_count,
        sum(refund_num) refund_num,
        sum(refund_amount) refund_amount
    from dwd_fact_order_refund_info
    where dt='2021-01-28'
    group by sku_id
),
tmp_cart as
(
    select
        item sku_id,
        count(*) cart_count
    from dwd_action_log
    where dt='2021-01-28'
    and user_id is not null
    and action_id='cart_add'
    group by item 
),tmp_favor as
(
    select
        item sku_id,
        count(*) favor_count
    from dwd_action_log
    where dt='2021-01-28'
    and user_id is not null
    and action_id='favor_add'
    group by item 
),
tmp_appraise as
(
select
    sku_id,
    sum(if(appraise='1201',1,0)) appraise_good_count,
    sum(if(appraise='1202',1,0)) appraise_mid_count,
    sum(if(appraise='1203',1,0)) appraise_bad_count,
    sum(if(appraise='1204',1,0)) appraise_default_count
from dwd_fact_comment_info
where dt='2021-01-28'
group by sku_id
)

insert overwrite table dws_sku_action_daycount partition(dt='2021-01-28')
select
    sku_id,
    sum(order_count),
    sum(order_num),
    sum(order_amount),
    sum(payment_count),
    sum(payment_num),
    sum(payment_amount),
    sum(refund_count),
    sum(refund_num),
    sum(refund_amount),
    sum(cart_count),
    sum(favor_count),
    sum(appraise_good_count),
    sum(appraise_mid_count),
    sum(appraise_bad_count),
    sum(appraise_default_count)
from
(
    select
        sku_id,
        order_count,
        order_num,
        order_amount,
        0 payment_count,
        0 payment_num,
        0 payment_amount,
        0 refund_count,
        0 refund_num,
        0 refund_amount,
        0 cart_count,
        0 favor_count,
        0 appraise_good_count,
        0 appraise_mid_count,
        0 appraise_bad_count,
        0 appraise_default_count
    from tmp_order
    union all
    select
        sku_id,
        0 order_count,
        0 order_num,
        0 order_amount,
        payment_count,
        payment_num,
        payment_amount,
        0 refund_count,
        0 refund_num,
        0 refund_amount,
        0 cart_count,
        0 favor_count,
        0 appraise_good_count,
        0 appraise_mid_count,
        0 appraise_bad_count,
        0 appraise_default_count
    from tmp_payment
    union all
    select
        sku_id,
        0 order_count,
        0 order_num,
        0 order_amount,
        0 payment_count,
        0 payment_num,
        0 payment_amount,
        refund_count,
        refund_num,
        refund_amount,
        0 cart_count,
        0 favor_count,
        0 appraise_good_count,
        0 appraise_mid_count,
        0 appraise_bad_count,
        0 appraise_default_count        
    from tmp_refund
    union all
    select
        sku_id,
        0 order_count,
        0 order_num,
        0 order_amount,
        0 payment_count,
        0 payment_num,
        0 payment_amount,
        0 refund_count,
        0 refund_num,
        0 refund_amount,
        cart_count,
        0 favor_count,
        0 appraise_good_count,
        0 appraise_mid_count,
        0 appraise_bad_count,
        0 appraise_default_count
    from tmp_cart
    union all
    select
        sku_id,
        0 order_count,
        0 order_num,
        0 order_amount,
        0 payment_count,
        0 payment_num,
        0 payment_amount,
        0 refund_count,
        0 refund_num,
        0 refund_amount,
        0 cart_count,
        favor_count,
        0 appraise_good_count,
        0 appraise_mid_count,
        0 appraise_bad_count,
        0 appraise_default_count
    from tmp_favor
    union all
    select
        sku_id,
        0 order_count,
        0 order_num,
        0 order_amount,
        0 payment_count,
        0 payment_num,
        0 payment_amount,
        0 refund_count,
        0 refund_num,
        0 refund_amount,
        0 cart_count,
        0 favor_count,
        appraise_good_count,
        appraise_mid_count,
        appraise_bad_count,
        appraise_default_count
    from tmp_appraise
)tmp
group by sku_id;

3)查询加载结果

hive (gmall)>

select * from dws_sku_action_daycount where dt='2021-01-28' limit 2;

5.3.4 每日活动统计

大数据电商离线数仓项目-下篇_第3张图片

1)建表语句

hive (gmall)> 
drop table if exists dws_activity_info_daycount;
create external table dws_activity_info_daycount(
    `id` string COMMENT '编号',
    `activity_name` string  COMMENT '活动名称',
    `activity_type` string  COMMENT '活动类型',
    `start_time` string  COMMENT '开始时间',
    `end_time` string  COMMENT '结束时间',
    `create_time` string  COMMENT '创建时间',
    `display_count` bigint COMMENT '曝光次数',
    `order_count` bigint COMMENT '下单次数',
    `order_amount` decimal(20,2) COMMENT '下单金额',
    `payment_count` bigint COMMENT '支付次数',
    `payment_amount` decimal(20,2) COMMENT '支付金额'
) COMMENT '每日活动统计'
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_activity_info_daycount/'
tblproperties ("parquet.compression"="lzo");

2)数据装载

hive (gmall)> 
with
tmp_op as
(
    select
        activity_id,
        sum(if(date_format(create_time,'yyyy-MM-dd')='2021-01-28',1,0)) order_count,
        sum(if(date_format(create_time,'yyyy-MM-dd')='2021-01-28',final_total_amount,0)) order_amount,
        sum(if(date_format(payment_time,'yyyy-MM-dd')='2021-01-28',1,0)) payment_count,
        sum(if(date_format(payment_time,'yyyy-MM-dd')='2021-01-28',final_total_amount,0)) payment_amount
    from dwd_fact_order_info
    where (dt='2021-01-28' or dt=date_add('2021-01-28',-1))
    and activity_id is not null
    group by activity_id
),
tmp_display as
(
    select
        item activity_id,
        count(*) display_count
    from dwd_display_log
    where dt='2021-01-28'
    and item_type='activity_id'
    group by item
),
tmp_activity as
(
    select
        *
    from dwd_dim_activity_info
    where dt='2021-01-28'
)
insert overwrite table dws_activity_info_daycount partition(dt='2021-01-28')
select
    nvl(tmp_op.activity_id,tmp_display.activity_id),
    tmp_activity.activity_name,
    tmp_activity.activity_type,
    tmp_activity.start_time,
    tmp_activity.end_time,
    tmp_activity.create_time,
    tmp_display.display_count,
    tmp_op.order_count,
    tmp_op.order_amount,
    tmp_op.payment_count,
    tmp_op.payment_amount
from tmp_op
full outer join tmp_display on tmp_op.activity_id=tmp_display.activity_id
left join tmp_activity on nvl(tmp_op.activity_id,tmp_display.activity_id)=tmp_activity.id;

3)查询加载结果

hive (gmall)> 
select * from dws_activity_info_daycount where dt='2021-01-28' limit 2;

5.3.5 每日地区统计

1)建表语句

hive (gmall)> 
drop table if exists dws_area_stats_daycount;
create external table dws_area_stats_daycount(
    `id` bigint COMMENT '编号',
    `province_name` string COMMENT '省份名称',
    `area_code` string COMMENT '地区编码',
    `iso_code` string COMMENT 'iso编码',
    `region_id` string COMMENT '地区ID',
    `region_name` string COMMENT '地区名称',
    `login_count` string COMMENT '活跃设备数',
    `order_count` bigint COMMENT '下单次数',
    `order_amount` decimal(20,2) COMMENT '下单金额',
    `payment_count` bigint COMMENT '支付次数',
    `payment_amount` decimal(20,2) COMMENT '支付金额'
) COMMENT '每日地区统计表'
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_area_stats_daycount/'
tblproperties ("parquet.compression"="lzo");

2)数据装载

hive (gmall)>
with 
tmp_login as
(
    select
        area_code,
        count(*) login_count
    from dwd_start_log
    where dt='2021-01-28'
    group by area_code
),
tmp_op as
(
    select
        province_id,
        sum(if(date_format(create_time,'yyyy-MM-dd')='2021-01-28',1,0)) order_count,
        sum(if(date_format(create_time,'yyyy-MM-dd')='2021-01-28',final_total_amount,0)) order_amount,
        sum(if(date_format(payment_time,'yyyy-MM-dd')='2021-01-28',1,0)) payment_count,
        sum(if(date_format(payment_time,'yyyy-MM-dd')='2021-01-28',final_total_amount,0)) payment_amount
    from dwd_fact_order_info
    where (dt='2021-01-28' or dt=date_add('2021-01-28',-1))
    group by province_id
)
insert overwrite table dws_area_stats_daycount partition(dt='2021-01-28')
select
    pro.id,
    pro.province_name,
    pro.area_code,
    pro.iso_code,
    pro.region_id,
    pro.region_name,
    nvl(tmp_login.login_count,0),
    nvl(tmp_op.order_count,0),
    nvl(tmp_op.order_amount,0.0),
    nvl(tmp_op.payment_count,0),
    nvl(tmp_op.payment_amount,0.0)
from dwd_dim_base_province pro
left join tmp_login on pro.area_code=tmp_login.area_code
left join tmp_op on pro.id=tmp_op.province_id;

3)查询加载结果

hive (gmall)>
select * from dws_area_stats_daycount where dt='2021-01-28' limit 2;

5.4 DWS层数据导入脚本

1)在/home/atguigu/bin目录下创建脚本dwd_to_dws.sh

[atguigu@hadoop105 bin]$ vim dwd_to_dws.sh

在脚本中填写如下内容

#!/bin/bash

APP=gmall
hive=/opt/module/hive/bin/hive

# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
    do_date=$1
else
    do_date=`date -d "-1 day" +%F`
fi

sql="
set mapreduce.job.queuename=hive;
with
tmp_start as
(
    select  
        mid_id,
        brand,
        model,
        count(*) login_count
    from ${APP}.dwd_start_log
    where dt='$do_date'
    group by mid_id,brand,model
),
tmp_page as

(
    select
        mid_id,
        brand,
        model,        
        collect_set(named_struct('page_id',page_id,'page_count',page_count)) page_stats
    from
    (
        select
            mid_id,
            brand,
            model,
            page_id,
            count(*) page_count
        from ${APP}.dwd_page_log
        where dt='$do_date'
        group by mid_id,brand,model,page_id
    )tmp
    group by mid_id,brand,model
)
insert overwrite table ${APP}.dws_uv_detail_daycount partition(dt='$do_date')
select
    nvl(tmp_start.mid_id,tmp_page.mid_id),
    nvl(tmp_start.brand,tmp_page.brand),
    nvl(tmp_start.model,tmp_page.model),
    tmp_start.login_count,
    tmp_page.page_stats
from tmp_start 
full outer join tmp_page
on tmp_start.mid_id=tmp_page.mid_id
and tmp_start.brand=tmp_page.brand
and tmp_start.model=tmp_page.model;


with
tmp_login as
(
    select
        user_id,
        count(*) login_count
    from ${APP}.dwd_start_log
    where dt='$do_date'
    and user_id is not null
    group by user_id
),
tmp_cart as
(
    select
        user_id,
        count(*) cart_count
    from ${APP}.dwd_action_log
    where dt='$do_date'
    and user_id is not null
    and action_id='cart_add'
    group by user_id
),tmp_order as
(
    select
        user_id,
        count(*) order_count,
        sum(final_total_amount) order_amount
    from ${APP}.dwd_fact_order_info
    where dt='$do_date'
    group by user_id
) ,
tmp_payment as
(
    select
        user_id,
        count(*) payment_count,
        sum(payment_amount) payment_amount
    from ${APP}.dwd_fact_payment_info
    where dt='$do_date'
    group by user_id
),
tmp_order_detail as
(
    select
        user_id,
        collect_set(named_struct('sku_id',sku_id,'sku_num',sku_num,'order_count',order_count,'order_amount',order_amount)) order_stats
    from
    (
        select
            user_id,
            sku_id,
            sum(sku_num) sku_num,
            count(*) order_count,
            cast(sum(final_amount_d) as decimal(20,2)) order_amount
        from ${APP}.dwd_fact_order_detail
        where dt='$do_date'
        group by user_id,sku_id
    )tmp
    group by user_id
)

insert overwrite table ${APP}.dws_user_action_daycount partition(dt='$do_date')
select
    tmp_login.user_id,
    login_count,
    nvl(cart_count,0),
    nvl(order_count,0),
    nvl(order_amount,0.0),
    nvl(payment_count,0),
    nvl(payment_amount,0.0),
    order_stats
from tmp_login
left outer join tmp_cart on tmp_login.user_id=tmp_cart.user_id
left outer join tmp_order on tmp_login.user_id=tmp_order.user_id
left outer join tmp_payment on tmp_login.user_id=tmp_payment.user_id
left outer join tmp_order_detail on tmp_login.user_id=tmp_order_detail.user_id;

with 
tmp_order as
(
    select
        sku_id,
        count(*) order_count,
        sum(sku_num) order_num,
        sum(final_amount_d) order_amount
    from ${APP}.dwd_fact_order_detail
    where dt='$do_date'
    group by sku_id
),
tmp_payment as
(
    select
        sku_id,
        count(*) payment_count,
        sum(sku_num) payment_num,
        sum(final_amount_d) payment_amount
    from ${APP}.dwd_fact_order_detail
    where dt='$do_date'
    and order_id in
    (
        select
            id
        from ${APP}.dwd_fact_order_info
        where (dt='$do_date'
        or dt=date_add('$do_date',-1))
        and date_format(payment_time,'yyyy-MM-dd')='$do_date'
    )
    group by sku_id
),
tmp_refund as
(
    select
        sku_id,
        count(*) refund_count,
        sum(refund_num) refund_num,
        sum(refund_amount) refund_amount
    from ${APP}.dwd_fact_order_refund_info
    where dt='$do_date'
    group by sku_id
),
tmp_cart as
(
    select
        item sku_id,
        count(*) cart_count
    from ${APP}.dwd_action_log
    where dt='$do_date'
    and user_id is not null
    and action_id='cart_add'
    group by item 
),tmp_favor as
(
    select
        item sku_id,
        count(*) favor_count
    from ${APP}.dwd_action_log
    where dt='$do_date'
    and user_id is not null
    and action_id='favor_add'
    group by item 
),
tmp_appraise as
(
select
    sku_id,
    sum(if(appraise='1201',1,0)) appraise_good_count,
    sum(if(appraise='1202',1,0)) appraise_mid_count,
    sum(if(appraise='1203',1,0)) appraise_bad_count,
    sum(if(appraise='1204',1,0)) appraise_default_count
from ${APP}.dwd_fact_comment_info
where dt='$do_date'
group by sku_id
)

insert overwrite table ${APP}.dws_sku_action_daycount partition(dt='$do_date')
select
    sku_id,
    sum(order_count),
    sum(order_num),
    sum(order_amount),
    sum(payment_count),
    sum(payment_num),
    sum(payment_amount),
    sum(refund_count),
    sum(refund_num),
    sum(refund_amount),
    sum(cart_count),
    sum(favor_count),
    sum(appraise_good_count),
    sum(appraise_mid_count),
    sum(appraise_bad_count),
    sum(appraise_default_count)
from
(
    select
        sku_id,
        order_count,
        order_num,
        order_amount,
        0 payment_count,
        0 payment_num,
        0 payment_amount,
        0 refund_count,
        0 refund_num,
        0 refund_amount,
        0 cart_count,
        0 favor_count,
        0 appraise_good_count,
        0 appraise_mid_count,
        0 appraise_bad_count,
        0 appraise_default_count
    from tmp_order
    union all
    select
        sku_id,
        0 order_count,
        0 order_num,
        0 order_amount,
        payment_count,
        payment_num,
        payment_amount,
        0 refund_count,
        0 refund_num,
        0 refund_amount,
        0 cart_count,
        0 favor_count,
        0 appraise_good_count,
        0 appraise_mid_count,
        0 appraise_bad_count,
        0 appraise_default_count
    from tmp_payment
    union all
    select
        sku_id,
        0 order_count,
        0 order_num,
        0 order_amount,
        0 payment_count,
        0 payment_num,
        0 payment_amount,
        refund_count,
        refund_num,
        refund_amount,
        0 cart_count,
        0 favor_count,
        0 appraise_good_count,
        0 appraise_mid_count,
        0 appraise_bad_count,
        0 appraise_default_count        
    from tmp_refund
    union all
    select
        sku_id,
        0 order_count,
        0 order_num,
        0 order_amount,
        0 payment_count,
        0 payment_num,
        0 payment_amount,
        0 refund_count,
        0 refund_num,
        0 refund_amount,
        cart_count,
        0 favor_count,
        0 appraise_good_count,
        0 appraise_mid_count,
        0 appraise_bad_count,
        0 appraise_default_count
    from tmp_cart
    union all
    select
        sku_id,
        0 order_count,
        0 order_num,
        0 order_amount,
        0 payment_count,
        0 payment_num,
        0 payment_amount,
        0 refund_count,
        0 refund_num,
        0 refund_amount,
        0 cart_count,
        favor_count,
        0 appraise_good_count,
        0 appraise_mid_count,
        0 appraise_bad_count,
        0 appraise_default_count
    from tmp_favor
    union all
    select
        sku_id,
        0 order_count,
        0 order_num,
        0 order_amount,
        0 payment_count,
        0 payment_num,
        0 payment_amount,
        0 refund_count,
        0 refund_num,
        0 refund_amount,
        0 cart_count,
        0 favor_count,
        appraise_good_count,
        appraise_mid_count,
        appraise_bad_count,
        appraise_default_count
    from tmp_appraise
)tmp
group by sku_id;

with 
tmp_login as
(
    select
        area_code,
        count(*) login_count
    from ${APP}.dwd_start_log
    where dt='$do_date'
    group by area_code
),
tmp_op as
(
    select
        province_id,
        sum(if(date_format(create_time,'yyyy-MM-dd')='$do_date',1,0)) order_count,
        sum(if(date_format(create_time,'yyyy-MM-dd')='$do_date',final_total_amount,0)) order_amount,
        sum(if(date_format(payment_time,'yyyy-MM-dd')='$do_date',1,0)) payment_count,
        sum(if(date_format(payment_time,'yyyy-MM-dd')='$do_date',final_total_amount,0)) payment_amount
    from ${APP}.dwd_fact_order_info
    where (dt='$do_date' or dt=date_add('$do_date',-1))
    group by province_id
)
insert overwrite table ${APP}.dws_area_stats_daycount partition(dt='$do_date')
select
    pro.id,
    pro.province_name,
    pro.area_code,
    pro.iso_code,
    pro.region_id,
    pro.region_name,
    nvl(tmp_login.login_count,0),
    nvl(tmp_op.order_count,0),
    nvl(tmp_op.order_amount,0.0),
    nvl(tmp_op.payment_count,0),
    nvl(tmp_op.payment_amount,0.0)
from ${APP}.dwd_dim_base_province pro
left join tmp_login on pro.area_code=tmp_login.area_code
left join tmp_op on pro.id=tmp_op.province_id;


with
tmp_op as
(
    select
        activity_id,
        sum(if(date_format(create_time,'yyyy-MM-dd')='$do_date',1,0)) order_count,
        sum(if(date_format(create_time,'yyyy-MM-dd')='$do_date',final_total_amount,0)) order_amount,
        sum(if(date_format(payment_time,'yyyy-MM-dd')='$do_date',1,0)) payment_count,
        sum(if(date_format(payment_time,'yyyy-MM-dd')='$do_date',final_total_amount,0)) payment_amount
    from ${APP}.dwd_fact_order_info
    where (dt='$do_date' or dt=date_add('$do_date',-1))
    and activity_id is not null
    group by activity_id
),
tmp_display as
(
    select
        item activity_id,
        count(*) display_count
    from ${APP}.dwd_display_log
    where dt='$do_date'
    and item_type='activity_id'
    group by item
),
tmp_activity as
(
    select
        *
    from ${APP}.dwd_dim_activity_info
    where dt='$do_date'
)
insert overwrite table ${APP}.dws_activity_info_daycount partition(dt='$do_date')
select
    nvl(tmp_op.activity_id,tmp_display.activity_id),
    tmp_activity.activity_name,
    tmp_activity.activity_type,
    tmp_activity.start_time,
    tmp_activity.end_time,
    tmp_activity.create_time,
    tmp_display.display_count,
    tmp_op.order_count,
    tmp_op.order_amount,
    tmp_op.payment_count,
    tmp_op.payment_amount
from tmp_op
full outer join tmp_display on tmp_op.activity_id=tmp_display.activity_id
left join tmp_activity on nvl(tmp_op.activity_id,tmp_display.activity_id)=tmp_activity.id;
"

$hive -e "$sql"

2)增加脚本执行权限

[atguigu@hadoop105 bin]$ chmod 777 dwd_to_dws.sh

3)执行脚本导入数据

[atguigu@hadoop105 bin]$ dwd_to_dws.sh 2021-01-28

4)查看导入数据

hive (gmall)> 
select * from dws_uv_detail_daycount where dt='2021-01-28' limit 2;
select * from dws_user_action_daycount where dt='2021-01-28' limit 2;
select * from dws_sku_action_daycount where dt='2021-01-28' limit 2;
select * from dws_activity_info_daycount where dt='2021-01-28' limit 2;
select * from dws_area_stats_daycount where dt='2021-01-28' limit 2;

第6章 数仓搭建-DWT层

DWS层宽表及宽表字段设计详见2.4.4。

6.1 设备主题宽表

大数据电商离线数仓项目-下篇_第4张图片

1)建表语句

hive (gmall)> 
drop table if exists dwt_uv_topic;
create external table dwt_uv_topic
(
    `mid_id` string comment '设备id',
    `brand` string comment '手机品牌',
    `model` string comment '手机型号',
    `login_date_first` string  comment '首次活跃时间',
    `login_date_last` string  comment '末次活跃时间',
    `login_day_count` bigint comment '当日活跃次数',
    `login_count` bigint comment '累积活跃天数'
) COMMENT '设备主题宽表'
stored as parquet
location '/warehouse/gmall/dwt/dwt_uv_topic'
tblproperties ("parquet.compression"="lzo");

2)数据装载

hive (gmall)> 
insert overwrite table dwt_uv_topic
select
    nvl(new.mid_id,old.mid_id),
    nvl(new.model,old.model),
    nvl(new.brand,old.brand),
    if(old.mid_id is null,'2021-01-28',old.login_date_first),
    if(new.mid_id is not null,'2021-01-28',old.login_date_last),
    if(new.mid_id is not null, new.login_count,0),
    nvl(old.login_count,0)+if(new.login_count>0,1,0)
from
(
    select
        *
    from dwt_uv_topic
)old
full outer join
(
    select
        *
    from dws_uv_detail_daycount
    where dt='2021-01-28'
)new
on old.mid_id=new.mid_id;

3)查询加载结果

hive (gmall)> select * from dwt_uv_topic limit 5;

6.2 会员主题宽表

宽表字段怎么来?维度关联的事实表度量值+开头、结尾+累积+累积一个时间段。

大数据电商离线数仓项目-下篇_第5张图片

1)建表语句

hive (gmall)> 
drop table if exists dwt_user_topic;
create external table dwt_user_topic
(
    user_id string  comment '用户id',
    login_date_first string  comment '首次登录时间',
    login_date_last string  comment '末次登录时间',
    login_count bigint comment '累积登录天数',
    login_last_30d_count bigint comment '最近30日登录天数',
    order_date_first string  comment '首次下单时间',
    order_date_last string  comment '末次下单时间',
    order_count bigint comment '累积下单次数',
    order_amount decimal(16,2) comment '累积下单金额',
    order_last_30d_count bigint comment '最近30日下单次数',
    order_last_30d_amount bigint comment '最近30日下单金额',
    payment_date_first string  comment '首次支付时间',
    payment_date_last string  comment '末次支付时间',
    payment_count decimal(16,2) comment '累积支付次数',
    payment_amount decimal(16,2) comment '累积支付金额',
    payment_last_30d_count decimal(16,2) comment '最近30日支付次数',
    payment_last_30d_amount decimal(16,2) comment '最近30日支付金额'
)COMMENT '会员主题宽表'
stored as parquet
location '/warehouse/gmall/dwt/dwt_user_topic/'
tblproperties ("parquet.compression"="lzo");

2)数据装载

hive (gmall)> 
insert overwrite table dwt_user_topic
select
    nvl(new.user_id,old.user_id),
    if(old.login_date_first is null and new.login_count>0,'2021-01-28',old.login_date_first),
    if(new.login_count>0,'2021-01-28',old.login_date_last),
    nvl(old.login_count,0)+if(new.login_count>0,1,0),
    nvl(new.login_last_30d_count,0),
    if(old.order_date_first is null and new.order_count>0,'2021-01-28',old.order_date_first),
    if(new.order_count>0,'2021-01-28',old.order_date_last),
    nvl(old.order_count,0)+nvl(new.order_count,0),
    nvl(old.order_amount,0)+nvl(new.order_amount,0),
    nvl(new.order_last_30d_count,0),
    nvl(new.order_last_30d_amount,0),
    if(old.payment_date_first is null and new.payment_count>0,'2021-01-28',old.payment_date_first),
    if(new.payment_count>0,'2021-01-28',old.payment_date_last),
    nvl(old.payment_count,0)+nvl(new.payment_count,0),
    nvl(old.payment_amount,0)+nvl(new.payment_amount,0),
    nvl(new.payment_last_30d_count,0),
    nvl(new.payment_last_30d_amount,0)
from
dwt_user_topic old
full outer join
(
    select
        user_id,
        sum(if(dt='2021-01-28',login_count,0)) login_count,
        sum(if(dt='2021-01-28',order_count,0)) order_count,
        sum(if(dt='2021-01-28',order_amount,0)) order_amount,
        sum(if(dt='2021-01-28',payment_count,0)) payment_count,
        sum(if(dt='2021-01-28',payment_amount,0)) payment_amount,
        sum(if(login_count>0,1,0)) login_last_30d_count,
        sum(order_count) order_last_30d_count,
        sum(order_amount) order_last_30d_amount,
        sum(payment_count) payment_last_30d_count,
        sum(payment_amount) payment_last_30d_amount
    from dws_user_action_daycount
    where dt>=date_add( '2021-01-28',-30)
    group by user_id
)new
on old.user_id=new.user_id;

3)查询加载结果

hive (gmall)> select * from dwt_user_topic limit 5;

6.3 商品主题宽表

1)建表语句

hive (gmall)> 
drop table if exists dwt_sku_topic;
create external table dwt_sku_topic
(
    sku_id string comment 'sku_id',
    spu_id string comment 'spu_id',
    order_last_30d_count bigint comment '最近30日被下单次数',
    order_last_30d_num bigint comment '最近30日被下单件数',
    order_last_30d_amount decimal(16,2)  comment '最近30日被下单金额',
    order_count bigint comment '累积被下单次数',
    order_num bigint comment '累积被下单件数',
    order_amount decimal(16,2) comment '累积被下单金额',
    payment_last_30d_count   bigint  comment '最近30日被支付次数',
    payment_last_30d_num bigint comment '最近30日被支付件数',
    payment_last_30d_amount  decimal(16,2) comment '最近30日被支付金额',
    payment_count   bigint  comment '累积被支付次数',
    payment_num bigint comment '累积被支付件数',
    payment_amount  decimal(16,2) comment '累积被支付金额',
    refund_last_30d_count bigint comment '最近三十日退款次数',
    refund_last_30d_num bigint comment '最近三十日退款件数',
    refund_last_30d_amount decimal(16,2) comment '最近三十日退款金额',
    refund_count bigint comment '累积退款次数',
    refund_num bigint comment '累积退款件数',
    refund_amount decimal(16,2) comment '累积退款金额',
    cart_last_30d_count bigint comment '最近30日被加入购物车次数',
    cart_count bigint comment '累积被加入购物车次数',
    favor_last_30d_count bigint comment '最近30日被收藏次数',
    favor_count bigint comment '累积被收藏次数',
    appraise_last_30d_good_count bigint comment '最近30日好评数',
    appraise_last_30d_mid_count bigint comment '最近30日中评数',
    appraise_last_30d_bad_count bigint comment '最近30日差评数',
    appraise_last_30d_default_count bigint comment '最近30日默认评价数',
    appraise_good_count bigint comment '累积好评数',
    appraise_mid_count bigint comment '累积中评数',
    appraise_bad_count bigint comment '累积差评数',
    appraise_default_count bigint comment '累积默认评价数'
 )COMMENT '商品主题宽表'
stored as parquet
location '/warehouse/gmall/dwt/dwt_sku_topic/'
tblproperties ("parquet.compression"="lzo");

2)数据装载

hive (gmall)> 
insert overwrite table dwt_sku_topic
select 
    nvl(new.sku_id,old.sku_id),
    sku_info.spu_id,
    nvl(new.order_count30,0),
    nvl(new.order_num30,0),
    nvl(new.order_amount30,0),
    nvl(old.order_count,0) + nvl(new.order_count,0),
    nvl(old.order_num,0) + nvl(new.order_num,0),
    nvl(old.order_amount,0) + nvl(new.order_amount,0),
    nvl(new.payment_count30,0),
    nvl(new.payment_num30,0),
    nvl(new.payment_amount30,0),
    nvl(old.payment_count,0) + nvl(new.payment_count,0),
    nvl(old.payment_num,0) + nvl(new.payment_count,0),
    nvl(old.payment_amount,0) + nvl(new.payment_count,0),
    nvl(new.refund_count30,0),
    nvl(new.refund_num30,0),
    nvl(new.refund_amount30,0),
    nvl(old.refund_count,0) + nvl(new.refund_count,0),
    nvl(old.refund_num,0) + nvl(new.refund_num,0),
    nvl(old.refund_amount,0) + nvl(new.refund_amount,0),
    nvl(new.cart_count30,0),
    nvl(old.cart_count,0) + nvl(new.cart_count,0),
    nvl(new.favor_count30,0),
    nvl(old.favor_count,0) + nvl(new.favor_count,0),
    nvl(new.appraise_good_count30,0),
    nvl(new.appraise_mid_count30,0),
    nvl(new.appraise_bad_count30,0),
    nvl(new.appraise_default_count30,0)  ,
    nvl(old.appraise_good_count,0) + nvl(new.appraise_good_count,0),
    nvl(old.appraise_mid_count,0) + nvl(new.appraise_mid_count,0),
    nvl(old.appraise_bad_count,0) + nvl(new.appraise_bad_count,0),
    nvl(old.appraise_default_count,0) + nvl(new.appraise_default_count,0) 
from 
dwt_sku_topic old
full outer join 
(
    select 
        sku_id,
        sum(if(dt='2021-01-28', order_count,0 )) order_count,
        sum(if(dt='2021-01-28',order_num ,0 ))  order_num, 
        sum(if(dt='2021-01-28',order_amount,0 )) order_amount ,
        sum(if(dt='2021-01-28',payment_count,0 )) payment_count,
        sum(if(dt='2021-01-28',payment_num,0 )) payment_num,
        sum(if(dt='2021-01-28',payment_amount,0 )) payment_amount,
        sum(if(dt='2021-01-28',refund_count,0 )) refund_count,
        sum(if(dt='2021-01-28',refund_num,0 )) refund_num,
        sum(if(dt='2021-01-28',refund_amount,0 )) refund_amount,  
        sum(if(dt='2021-01-28',cart_count,0 )) cart_count,
        sum(if(dt='2021-01-28',favor_count,0 )) favor_count,
        sum(if(dt='2021-01-28',appraise_good_count,0 )) appraise_good_count,  
        sum(if(dt='2021-01-28',appraise_mid_count,0 ) ) appraise_mid_count ,
        sum(if(dt='2021-01-28',appraise_bad_count,0 )) appraise_bad_count,  
        sum(if(dt='2021-01-28',appraise_default_count,0 )) appraise_default_count,
        sum(order_count) order_count30 ,
        sum(order_num) order_num30,
        sum(order_amount) order_amount30,
        sum(payment_count) payment_count30,
        sum(payment_num) payment_num30,
        sum(payment_amount) payment_amount30,
        sum(refund_count) refund_count30,
        sum(refund_num) refund_num30,
        sum(refund_amount) refund_amount30,
        sum(cart_count) cart_count30,
        sum(favor_count) favor_count30,
        sum(appraise_good_count) appraise_good_count30,
        sum(appraise_mid_count) appraise_mid_count30,
        sum(appraise_bad_count) appraise_bad_count30,
        sum(appraise_default_count) appraise_default_count30 
    from dws_sku_action_daycount
    where dt >= date_add ('2021-01-28', -30)
    group by sku_id    
)new 
on new.sku_id = old.sku_id
left join 
(select * from dwd_dim_sku_info where dt='2021-01-28') sku_info
on nvl(new.sku_id,old.sku_id)= sku_info.id;

3)查询加载结果

hive (gmall)> select * from dwt_sku_topic limit 5;

6.4 活动主题宽表

大数据电商离线数仓项目-下篇_第6张图片

1)建表语句

hive (gmall)> 
drop table if exists dwt_activity_topic;
create external table dwt_activity_topic(
    `id` string COMMENT '编号',
    `activity_name` string  COMMENT '活动名称',
    `activity_type` string  COMMENT '活动类型',
    `start_time` string  COMMENT '开始时间',
    `end_time` string  COMMENT '结束时间',
    `create_time` string  COMMENT '创建时间',
    `display_day_count` bigint COMMENT '当日曝光次数',
    `order_day_count` bigint COMMENT '当日下单次数',
    `order_day_amount` decimal(20,2) COMMENT '当日下单金额',
    `payment_day_count` bigint COMMENT '当日支付次数',
    `payment_day_amount` decimal(20,2) COMMENT '当日支付金额',
    `display_count` bigint COMMENT '累积曝光次数',
    `order_count` bigint COMMENT '累积下单次数',
    `order_amount` decimal(20,2) COMMENT '累积下单金额',
    `payment_count` bigint COMMENT '累积支付次数',
    `payment_amount` decimal(20,2) COMMENT '累积支付金额'
) COMMENT '活动主题宽表'
stored as parquet
location '/warehouse/gmall/dwt/dwt_activity_topic/'
tblproperties ("parquet.compression"="lzo");

2)数据装载

hive (gmall)> 
insert overwrite table dwt_activity_topic
select
    nvl(new.id,old.id),
    nvl(new.activity_name,old.activity_name),
    nvl(new.activity_type,old.activity_type),
    nvl(new.start_time,old.start_time),
    nvl(new.end_time,old.end_time),
    nvl(new.create_time,old.create_time),
    nvl(new.display_count,0),
    nvl(new.order_count,0),
    nvl(new.order_amount,0.0),
    nvl(new.payment_count,0),
    nvl(new.payment_amount,0.0),
    nvl(new.display_count,0)+nvl(old.display_count,0),
    nvl(new.order_count,0)+nvl(old.order_count,0),
    nvl(new.order_amount,0.0)+nvl(old.order_amount,0.0),
    nvl(new.payment_count,0)+nvl(old.payment_count,0),
    nvl(new.payment_amount,0.0)+nvl(old.payment_amount,0.0)
from
(
    select
        *
    from dwt_activity_topic
)old
full outer join
(
    select
        *
    from dws_activity_info_daycount
    where dt='2021-01-28'
)new
on old.id=new.id;

3)查询加载结果

hive (gmall)> select * from dwt_activity_topic limit 5;

6.5 地区主题宽表

1)建表语句

hive (gmall)> 
drop table if exists dwt_area_topic;
create external table dwt_area_topic(
    `id` bigint COMMENT '编号',
    `province_name` string COMMENT '省份名称',
    `area_code` string COMMENT '地区编码',
    `iso_code` string COMMENT 'iso编码',
    `region_id` string COMMENT '地区ID',
    `region_name` string COMMENT '地区名称',
    `login_day_count` string COMMENT '当天活跃设备数',
    `login_last_30d_count` string COMMENT '最近30天活跃设备数',
    `order_day_count` bigint COMMENT '当天下单次数',
    `order_day_amount` decimal(16,2) COMMENT '当天下单金额',
    `order_last_30d_count` bigint COMMENT '最近30天下单次数',
    `order_last_30d_amount` decimal(16,2) COMMENT '最近30天下单金额',
    `payment_day_count` bigint COMMENT '当天支付次数',
    `payment_day_amount` decimal(16,2) COMMENT '当天支付金额',
    `payment_last_30d_count` bigint COMMENT '最近30天支付次数',
    `payment_last_30d_amount` decimal(16,2) COMMENT '最近30天支付金额'
) COMMENT '地区主题宽表'
stored as parquet
location '/warehouse/gmall/dwt/dwt_area_topic/'
tblproperties ("parquet.compression"="lzo");

2)数据装载

hive (gmall)> 
insert overwrite table dwt_area_topic
select
    nvl(old.id,new.id),
    nvl(old.province_name,new.province_name),
    nvl(old.area_code,new.area_code),
    nvl(old.iso_code,new.iso_code),
    nvl(old.region_id,new.region_id),
    nvl(old.region_name,new.region_name),
    nvl(new.login_day_count,0),
    nvl(new.login_last_30d_count,0),
    nvl(new.order_day_count,0),
    nvl(new.order_day_amount,0.0),
    nvl(new.order_last_30d_count,0),
    nvl(new.order_last_30d_amount,0.0),
    nvl(new.payment_day_count,0),
    nvl(new.payment_day_amount,0.0),
    nvl(new.payment_last_30d_count,0),
    nvl(new.payment_last_30d_amount,0.0)
from 
(
    select
        *
    from dwt_area_topic
)old
full outer join
(
    select
        id,
        province_name,
        area_code,
        iso_code,
        region_id,
        region_name,
        sum(if(dt='2021-01-28',login_count,0)) login_day_count,
        sum(if(dt='2021-01-28',order_count,0)) order_day_count,
        sum(if(dt='2021-01-28',order_amount,0.0)) order_day_amount,
        sum(if(dt='2021-01-28',payment_count,0)) payment_day_count,
        sum(if(dt='2021-01-28',payment_amount,0.0)) payment_day_amount,
        sum(login_count) login_last_30d_count,
        sum(order_count) order_last_30d_count,
        sum(order_amount) order_last_30d_amount,
        sum(payment_count) payment_last_30d_count,
        sum(payment_amount) payment_last_30d_amount
    from dws_area_stats_daycount
    where dt>=date_add('2021-01-28',-30)
    group by id,province_name,area_code,iso_code,region_id,region_name
)new
on old.id=new.id;

3)查询加载结果

hive (gmall)> select * from dwt_area_topic limit 5;

6.6 DWT层数据导入脚本

1)在/home/atguigu/bin目录下创建脚本dws_to_dwt.sh

[atguigu@hadoop105 bin]$ vim dws_to_dwt.sh

在脚本中填写如下内容

#!/bin/bash

APP=gmall
hive=/opt/module/hive/bin/hive

# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
    do_date=$1
else 
    do_date=`date -d "-1 day" +%F`
fi

sql="
set mapreduce.job.queuename=hive;
insert overwrite table ${APP}.dwt_uv_topic
select
    nvl(new.mid_id,old.mid_id),
    nvl(new.model,old.model),
    nvl(new.brand,old.brand),
    if(old.mid_id is null,'$do_date',old.login_date_first),
    if(new.mid_id is not null,'$do_date',old.login_date_last),
    if(new.mid_id is not null, new.login_count,0),
    nvl(old.login_count,0)+if(new.login_count>0,1,0)
from
(
    select
        *
    from ${APP}.dwt_uv_topic
)old
full outer join
(
    select
        *
    from ${APP}.dws_uv_detail_daycount
    where dt='$do_date'
)new
on old.mid_id=new.mid_id;

insert overwrite table ${APP}.dwt_user_topic
select
    nvl(new.user_id,old.user_id),
    if(old.login_date_first is null and new.login_count>0,'$do_date',old.login_date_first),
    if(new.login_count>0,'$do_date',old.login_date_last),
    nvl(old.login_count,0)+if(new.login_count>0,1,0),
    nvl(new.login_last_30d_count,0),
    if(old.order_date_first is null and new.order_count>0,'$do_date',old.order_date_first),
    if(new.order_count>0,'$do_date',old.order_date_last),
    nvl(old.order_count,0)+nvl(new.order_count,0),
    nvl(old.order_amount,0)+nvl(new.order_amount,0),
    nvl(new.order_last_30d_count,0),
    nvl(new.order_last_30d_amount,0),
    if(old.payment_date_first is null and new.payment_count>0,'$do_date',old.payment_date_first),
    if(new.payment_count>0,'$do_date',old.payment_date_last),
    nvl(old.payment_count,0)+nvl(new.payment_count,0),
    nvl(old.payment_amount,0)+nvl(new.payment_amount,0),
    nvl(new.payment_last_30d_count,0),
    nvl(new.payment_last_30d_amount,0)
from
${APP}.dwt_user_topic old
full outer join
(
    select
        user_id,
        sum(if(dt='$do_date',login_count,0)) login_count,
        sum(if(dt='$do_date',order_count,0)) order_count,
        sum(if(dt='$do_date',order_amount,0)) order_amount,
        sum(if(dt='$do_date',payment_count,0)) payment_count,
        sum(if(dt='$do_date',payment_amount,0)) payment_amount,
        sum(if(login_count>0,1,0)) login_last_30d_count,
        sum(order_count) order_last_30d_count,
        sum(order_amount) order_last_30d_amount,
        sum(payment_count) payment_last_30d_count,
        sum(payment_amount) payment_last_30d_amount
    from ${APP}.dws_user_action_daycount
    where dt>=date_add( '$do_date',-30)
    group by user_id
)new
on old.user_id=new.user_id;

insert overwrite table ${APP}.dwt_sku_topic
select 
    nvl(new.sku_id,old.sku_id),
    sku_info.spu_id,
    nvl(new.order_count30,0),
    nvl(new.order_num30,0),
    nvl(new.order_amount30,0),
    nvl(old.order_count,0) + nvl(new.order_count,0),
    nvl(old.order_num,0) + nvl(new.order_num,0),
    nvl(old.order_amount,0) + nvl(new.order_amount,0),
    nvl(new.payment_count30,0),
    nvl(new.payment_num30,0),
    nvl(new.payment_amount30,0),
    nvl(old.payment_count,0) + nvl(new.payment_count,0),
    nvl(old.payment_num,0) + nvl(new.payment_count,0),
    nvl(old.payment_amount,0) + nvl(new.payment_count,0),
    nvl(new.refund_count30,0),
    nvl(new.refund_num30,0),
    nvl(new.refund_amount30,0),
    nvl(old.refund_count,0) + nvl(new.refund_count,0),
    nvl(old.refund_num,0) + nvl(new.refund_num,0),
    nvl(old.refund_amount,0) + nvl(new.refund_amount,0),
    nvl(new.cart_count30,0),
    nvl(old.cart_count,0) + nvl(new.cart_count,0),
    nvl(new.favor_count30,0),
    nvl(old.favor_count,0) + nvl(new.favor_count,0),
    nvl(new.appraise_good_count30,0),
    nvl(new.appraise_mid_count30,0),
    nvl(new.appraise_bad_count30,0),
    nvl(new.appraise_default_count30,0)  ,
    nvl(old.appraise_good_count,0) + nvl(new.appraise_good_count,0),
    nvl(old.appraise_mid_count,0) + nvl(new.appraise_mid_count,0),
    nvl(old.appraise_bad_count,0) + nvl(new.appraise_bad_count,0),
    nvl(old.appraise_default_count,0) + nvl(new.appraise_default_count,0) 
from 
(
    select
        sku_id,
        spu_id,
        order_last_30d_count,
        order_last_30d_num,
        order_last_30d_amount,
        order_count,
        order_num,
        order_amount  ,
        payment_last_30d_count,
        payment_last_30d_num,
        payment_last_30d_amount,
        payment_count,
        payment_num,
        payment_amount,
        refund_last_30d_count,
        refund_last_30d_num,
        refund_last_30d_amount,
        refund_count,
        refund_num,
        refund_amount,
        cart_last_30d_count,
        cart_count,
        favor_last_30d_count,
        favor_count,
        appraise_last_30d_good_count,
        appraise_last_30d_mid_count,
        appraise_last_30d_bad_count,
        appraise_last_30d_default_count,
        appraise_good_count,
        appraise_mid_count,
        appraise_bad_count,
        appraise_default_count 
    from ${APP}.dwt_sku_topic
)old
full outer join 
(
    select 
        sku_id,
        sum(if(dt='$do_date', order_count,0 )) order_count,
        sum(if(dt='$do_date',order_num ,0 ))  order_num, 
        sum(if(dt='$do_date',order_amount,0 )) order_amount ,
        sum(if(dt='$do_date',payment_count,0 )) payment_count,
        sum(if(dt='$do_date',payment_num,0 )) payment_num,
        sum(if(dt='$do_date',payment_amount,0 )) payment_amount,
        sum(if(dt='$do_date',refund_count,0 )) refund_count,
        sum(if(dt='$do_date',refund_num,0 )) refund_num,
        sum(if(dt='$do_date',refund_amount,0 )) refund_amount,  
        sum(if(dt='$do_date',cart_count,0 )) cart_count,
        sum(if(dt='$do_date',favor_count,0 )) favor_count,
        sum(if(dt='$do_date',appraise_good_count,0 )) appraise_good_count,  
        sum(if(dt='$do_date',appraise_mid_count,0 ) ) appraise_mid_count ,
        sum(if(dt='$do_date',appraise_bad_count,0 )) appraise_bad_count,  
        sum(if(dt='$do_date',appraise_default_count,0 )) appraise_default_count,
        sum(order_count) order_count30 ,
        sum(order_num) order_num30,
        sum(order_amount) order_amount30,
        sum(payment_count) payment_count30,
        sum(payment_num) payment_num30,
        sum(payment_amount) payment_amount30,
        sum(refund_count) refund_count30,
        sum(refund_num) refund_num30,
        sum(refund_amount) refund_amount30,
        sum(cart_count) cart_count30,
        sum(favor_count) favor_count30,
        sum(appraise_good_count) appraise_good_count30,
        sum(appraise_mid_count) appraise_mid_count30,
        sum(appraise_bad_count) appraise_bad_count30,
        sum(appraise_default_count) appraise_default_count30 
    from ${APP}.dws_sku_action_daycount
    where dt >= date_add ('$do_date', -30)
    group by sku_id    
)new 
on new.sku_id = old.sku_id
left join 
(select * from ${APP}.dwd_dim_sku_info where dt='$do_date') sku_info
on nvl(new.sku_id,old.sku_id)= sku_info.id;

insert overwrite table ${APP}.dwt_activity_topic
select
    nvl(new.id,old.id),
    nvl(new.activity_name,old.activity_name),
    nvl(new.activity_type,old.activity_type),
    nvl(new.start_time,old.start_time),
    nvl(new.end_time,old.end_time),
    nvl(new.create_time,old.create_time),
    nvl(new.display_count,0),
    nvl(new.order_count,0),
    nvl(new.order_amount,0.0),
    nvl(new.payment_count,0),
    nvl(new.payment_amount,0.0),
    nvl(new.display_count,0)+nvl(old.display_count,0),
    nvl(new.order_count,0)+nvl(old.order_count,0),
    nvl(new.order_amount,0.0)+nvl(old.order_amount,0.0),
    nvl(new.payment_count,0)+nvl(old.payment_count,0),
    nvl(new.payment_amount,0.0)+nvl(old.payment_amount,0.0)
from
(
    select
        *
    from ${APP}.dwt_activity_topic
)old
full outer join
(
    select
        *
    from ${APP}.dws_activity_info_daycount
    where dt='$do_date'
)new
on old.id=new.id;

insert overwrite table ${APP}.dwt_area_topic
select
    nvl(old.id,new.id),
    nvl(old.province_name,new.province_name),
    nvl(old.area_code,new.area_code),
    nvl(old.iso_code,new.iso_code),
    nvl(old.region_id,new.region_id),
    nvl(old.region_name,new.region_name),
    nvl(new.login_day_count,0),
    nvl(new.login_last_30d_count,0),
    nvl(new.order_day_count,0),
    nvl(new.order_day_amount,0.0),
    nvl(new.order_last_30d_count,0),
    nvl(new.order_last_30d_amount,0.0),
    nvl(new.payment_day_count,0),
    nvl(new.payment_day_amount,0.0),
    nvl(new.payment_last_30d_count,0),
    nvl(new.payment_last_30d_amount,0.0)
from 
(
    select
        *
    from ${APP}.dwt_area_topic
)old
full outer join
(
    select
        id,
        province_name,
        area_code,
        iso_code,
        region_id,
        region_name,
        sum(if(dt='$do_date',login_count,0)) login_day_count,
        sum(if(dt='$do_date',order_count,0)) order_day_count,
        sum(if(dt='$do_date',order_amount,0.0)) order_day_amount,
        sum(if(dt='$do_date',payment_count,0)) payment_day_count,
        sum(if(dt='$do_date',payment_amount,0.0)) payment_day_amount,
        sum(login_count) login_last_30d_count,
        sum(order_count) order_last_30d_count,
        sum(order_amount) order_last_30d_amount,
        sum(payment_count) payment_last_30d_count,
        sum(payment_amount) payment_last_30d_amount
    from ${APP}.dws_area_stats_daycount
    where dt>=date_add('$do_date',-30)
    group by id,province_name,area_code,iso_code,region_id,region_name
)new
on old.id=new.id;
"

$hive -e "$sql"

2)增加脚本执行权限

[atguigu@hadoop105 bin]$ chmod 777 dws_to_dwt.sh

3)执行脚本导入数据

[atguigu@hadoop105 bin]$ dws_to_dwt.sh 2021-01-28

4)查看导入数据

hive (gmall)> 
select * from dwt_uv_topic limit 5;
select * from dwt_user_topic limit 5;
select * from dwt_sku_topic limit 5;
select * from dwt_activity_topic limit 5;
select * from dwt_area_topic limit 5;

第7章 数仓搭建-ADS层

7.1 新数据生成

1)重启行为数据通道

[atguigu@hadoop105 module]$ cluster.sh stop
[atguigu@hadoop105 module]$ cluster.sh start

2)修改/opt/module/applog下的application.properties

#业务日期
mock.date=2021-01-29

注意:分发至其他需要生成数据的节点

[atguigu@hadoop105 applog]$ xsync application.properties

3)生成数据

[atguigu@hadoop105 bin]$ lg.sh

注意:生成数据之后,记得查看HDFS数据是否存在!

4)导入数据至ODS层

[atguigu@hadoop105 bin]$ hdfs_to_ods_log.sh 2021-01-29

5)导入数据至DWD层

[atguigu@hadoop105 bin]$ ods_to_dwd_log.sh 2021-01-29

6)导入数据至DWS层

[atguigu@hadoop105 bin]$ dwd_to_dws.sh 2021-01-29

7)导入数据至DWT层

[atguigu@hadoop105 bin]$ dws_to_dwt.sh 2021-01-29

8)修改application.properties

#业务日期
mock.date=2021-01-30

重复前面3-7步即可!

7.2 设备主题

7.2.1 活跃设备数(日、周、月)

需求定义:

日活:当日活跃的设备数

周活:当周活跃的设备数

月活:当月活跃的设备数

1)建表语句

hive (gmall)>
drop table if exists ads_uv_count;
create external table ads_uv_count(
    `dt` string COMMENT '统计日期',
    `day_count` bigint COMMENT '当日用户数量',
    `wk_count`  bigint COMMENT '当周用户数量',
    `mn_count`  bigint COMMENT '当月用户数量',
    `is_weekend` string COMMENT 'Y,N是否是周末,用于得到本周最终结果',
    `is_monthend` string COMMENT 'Y,N是否是月末,用于得到本月最终结果' 
) COMMENT '活跃设备数'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_uv_count/';

2)导入数据

hive (gmall)>
insert into table ads_uv_count 
select  
    '2021-01-28' dt,
    daycount.ct,
    wkcount.ct,
    mncount.ct,
    if(date_add(next_day('2021-01-28','MO'),-1)='2021-01-28','Y','N') ,
    if(last_day('2021-01-28')='2021-01-28','Y','N') 
from 
(
    select  
        '2021-01-28' dt,
        count(*) ct
    from dwt_uv_topic
    where login_date_last='2021-01-28'  
)daycount join 
( 
    select  
        '2021-01-28' dt,
        count (*) ct
    from dwt_uv_topic
    where login_date_last>=date_add(next_day('2021-01-28','MO'),-7) 
    and login_date_last<= date_add(next_day('2021-01-28','MO'),-1) 
) wkcount on daycount.dt=wkcount.dt
join 
( 
    select  
        '2021-01-28' dt,
        count (*) ct
    from dwt_uv_topic
    where date_format(login_date_last,'yyyy-MM')=date_format('2021-01-28','yyyy-MM')  
)mncount on daycount.dt=mncount.dt;

3)查询导入结果

hive (gmall)> select * from ads_uv_count;

7.2.2 每日新增设备

1)建表语句

hive (gmall)>
drop table if exists ads_new_mid_count;
create external table ads_new_mid_count
(
    `create_date`     string comment '创建时间' ,
    `new_mid_count`   BIGINT comment '新增设备数量' 
)  COMMENT '每日新增设备数量'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_new_mid_count/';

2)导入数据

hive (gmall)>
insert into table ads_new_mid_count 
select
    '2021-01-28',
    count(*)
from dwt_uv_topic
where login_date_first='2021-01-28';

3)查询导入数据

hive (gmall)> select * from ads_new_mid_count;

7.2.3 留存率

大数据电商离线数仓项目-下篇_第7张图片

1)建表语句

hive (gmall)>
drop table if exists ads_user_retention_day_rate;
create external table ads_user_retention_day_rate 
(
     `stat_date`          string comment '统计日期',
     `create_date`       string  comment '设备新增日期',
     `retention_day`     int comment '截止当前日期留存天数',
     `retention_count`    bigint comment  '留存数量',
     `new_mid_count`     bigint comment '设备新增数量',
     `retention_ratio`   decimal(16,2) comment '留存率'
)  COMMENT '留存率'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_user_retention_day_rate/';

2)导入数据

hive (gmall)>
insert into table ads_user_retention_day_rate
select
    '2021-01-28',
    date_add('2021-01-28',-1),
    1,--留存天数
    sum(if(login_date_first=date_add('2021-01-28',-1) and login_date_last='2021-01-28',1,0)),
    sum(if(login_date_first=date_add('2021-01-28',-1),1,0)),
    sum(if(login_date_first=date_add('2021-01-28',-1) and login_date_last='2021-01-28',1,0))/sum(if(login_date_first=date_add('2021-01-28',-1),1,0))*100
from dwt_uv_topic

union all

select
    '2021-01-28',
    date_add('2021-01-28',-2),
    2,
    sum(if(login_date_first=date_add('2021-01-28',-2) and login_date_last='2021-01-28',1,0)),
    sum(if(login_date_first=date_add('2021-01-28',-2),1,0)),
    sum(if(login_date_first=date_add('2021-01-28',-2) and login_date_last='2021-01-28',1,0))/sum(if(login_date_first=date_add('2021-01-28',-2),1,0))*100
from dwt_uv_topic

union all

select
    '2021-01-28',
    date_add('2021-01-28',-3),
    3,
    sum(if(login_date_first=date_add('2021-01-28',-3) and login_date_last='2021-01-28',1,0)),
    sum(if(login_date_first=date_add('2021-01-28',-3),1,0)),
    sum(if(login_date_first=date_add('2021-01-28',-3) and login_date_last='2021-01-28',1,0))/sum(if(login_date_first=date_add('2021-01-28',-3),1,0))*100
from dwt_uv_topic;

3)查询导入数据

hive (gmall)>select * from ads_user_retention_day_rate;

7.2.4 沉默用户数

需求定义:

沉默用户:只在安装当天启动过,且启动时间是在7天前

1)建表语句

hive (gmall)>
drop table if exists ads_silent_count;
create external table ads_silent_count( 
    `dt` string COMMENT '统计日期',
    `silent_count` bigint COMMENT '沉默设备数'
) COMMENT '沉默用户数'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_silent_count';

2)导入2021-01-29数据

hive (gmall)>
insert into table ads_silent_count
select
    '2021-01-29',
    count(*) 
from dwt_uv_topic
where login_date_first=login_date_last
and login_date_last<=date_add('2021-01-29',-7);

3)查询导入数据

hive (gmall)> select * from ads_silent_count;

7.2.5 本周回流用户数

需求定义:

本周回流用户:上周未活跃,本周活跃的设备,且不是本周新增设备

1)建表语句

hive (gmall)>
drop table if exists ads_back_count;
create external table ads_back_count( 
    `dt` string COMMENT '统计日期',
    `wk_dt` string COMMENT '统计日期所在周',
    `wastage_count` bigint COMMENT '回流设备数'
) COMMENT '本周回流用户数'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_back_count';

2)导入数据:

hive (gmall)> 
insert into table ads_back_count
select
    '2021-01-29',
    concat(date_add(next_day('2021-01-29','MO'),-7),'_', date_add(next_day('2021-01-29','MO'),-1)),
    count(*)
from
(
    select
        mid_id
    from dwt_uv_topic
    where login_date_last>=date_add(next_day('2021-01-29','MO'),-7) 
    and login_date_last<= date_add(next_day('2021-01-29','MO'),-1)
    and login_date_first<date_add(next_day('2021-01-29','MO'),-7)
)current_wk
left join
(
    select
        mid_id
    from dws_uv_detail_daycount
    where dt>=date_add(next_day('2021-01-29','MO'),-7*2) 
    and dt<= date_add(next_day('2021-01-29','MO'),-7-1) 
    group by mid_id
)last_wk
on current_wk.mid_id=last_wk.mid_id
where last_wk.mid_id is null;

3)查询结果

hive (gmall)> select * from ads_back_count;

7.2.6 流失用户数

需求定义:

流失用户:最近7天未活跃的设备

1)建表语句

hive (gmall)>
drop table if exists ads_wastage_count;
create external table ads_wastage_count( 
    `dt` string COMMENT '统计日期',
    `wastage_count` bigint COMMENT '流失设备数'
) COMMENT '流失用户数'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_wastage_count';

2)导入2021-01-29数据

hive (gmall)>
insert into table ads_wastage_count
select
     '2021-01-29',
     count(*)
from 
(
    select 
        mid_id
    from dwt_uv_topic
    where login_date_last<=date_add('2021-01-29',-7)
    group by mid_id
)t1;

3)查询结果

hive (gmall)> select * from ads_wastage_count;

7.2.7 最近连续三周活跃用户数

1)建表语句

hive (gmall)>
drop table if exists ads_continuity_wk_count;
create external table ads_continuity_wk_count( 
    `dt` string COMMENT '统计日期,一般用结束周周日日期,如果每天计算一次,可用当天日期',
    `wk_dt` string COMMENT '持续时间',
    `continuity_count` bigint COMMENT '活跃用户数’
) COMMENT '最近连续三周活跃用户数'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_continuity_wk_count';

2)导入2021-01-29所在周的数据

hive (gmall)>
insert into table ads_continuity_wk_count
select
    '2021-01-29',
    concat(date_add(next_day('2021-01-29','MO'),-7*3),'_',date_add(next_day('2021-01-29','MO'),-1)),
    count(*)
from
(
    select
        mid_id
    from
    (
        select
            mid_id
        from dws_uv_detail_daycount
        where dt>=date_add(next_day('2021-01-29','monday'),-7)
        and dt<=date_add(next_day('2021-01-29','monday'),-1)
        group by mid_id

        union all

        select
            mid_id
        from dws_uv_detail_daycount
        where dt>=date_add(next_day('2021-01-29','monday'),-7*2)
        and dt<=date_add(next_day('2021-01-29','monday'),-7-1)
        group by mid_id

        union all

        select
            mid_id
        from dws_uv_detail_daycount
        where dt>=date_add(next_day('2021-01-29','monday'),-7*3)
        and dt<=date_add(next_day('2021-01-29','monday'),-7*2-1)
        group by mid_id
    )t1
    group by mid_id
    having count(*)=3
)t2;

3)查询

hive (gmall)> select * from ads_continuity_wk_count;

7.2.8 最近七天内连续三天活跃用户数

1)建表语句

hive (gmall)>
drop table if exists ads_continuity_uv_count;
create external table ads_continuity_uv_count( 
    `dt` string COMMENT '统计日期',
    `wk_dt` string COMMENT '最近7天日期',
    `continuity_count` bigint
) COMMENT '最近七天内连续三天活跃用户数'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_continuity_uv_count';

2)写出导入数据的SQL语句

insert into table ads_continuity_uv_count
select
    '2021-01-28',
    concat(date_add('2021-01-28',-6),'_','2021-01-28'),
    count(*)
from
(
    select mid_id
    from
    (
        select mid_id
        from
        (
            select 
                mid_id,
                date_sub(dt,rank) date_dif
            from
            (
                select
                    mid_id,
                    dt,
                    rank() over(partition by mid_id order by dt) rank
                from dws_uv_detail_daycount
                where dt>=date_add('2021-01-28',-6) and dt<='2021-01-28'
            )t1
        )t2 
        group by mid_id,date_dif
        having count(*)>=3
    )t3 
    group by mid_id
)t4;

方案 2:

select '2021-01-28',

       concat(date_add('2021-01-28', -6), '_', '2021-01-28'),
       count(*)
from (
         select mid_id
         from (
                  select mid_id
                  from (
                           select mid_id,
                                  datediff(dt, ld) diff
                           from (
                                    select mid_id,
                                           dt,
                                           lead(dt, 2, '1999-99-99') over (partition by mid_id order by dt) ld
                                    from dws_uv_detail_daycount
                                    where dt >= date_add('2021-01-28', -6)
                                      and dt <= '2021-01-28'
                                ) t1
                       ) t2
                  where diff = 2
                  group by mid_id, diff
              ) t3
         group by mid_id
     ) t4;

3)查询

hive (gmall)> select * from ads_continuity_uv_count;

7.3 会员主题

7.3.1 会员信息

1)建表

hive (gmall)>
drop table if exists ads_user_topic;
create external table ads_user_topic(
    `dt` string COMMENT '统计日期',
    `day_users` string COMMENT '活跃会员数',
    `day_new_users` string COMMENT '新增会员数',
    `day_new_payment_users` string COMMENT '新增消费会员数',
    `payment_users` string COMMENT '总付费会员数',
    `users` string COMMENT '总会员数',
    `day_users2users` decimal(16,2) COMMENT '会员活跃率',
    `payment_users2users` decimal(16,2) COMMENT '会员付费率',
    `day_new_users2users` decimal(16,2) COMMENT '会员新鲜度'
) COMMENT '会员信息表'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_user_topic';

2)导入数据

hive (gmall)>
insert into table ads_user_topic
select
    '2021-01-28',
    sum(if(login_date_last='2021-01-28',1,0)),
    sum(if(login_date_first='2021-01-28',1,0)),
    sum(if(payment_date_first='2021-01-28',1,0)),
    sum(if(payment_count>0,1,0)),
    count(*),
    sum(if(login_date_last='2021-01-28',1,0))/count(*),
    sum(if(payment_count>0,1,0))/count(*),
    sum(if(login_date_first='2021-01-28',1,0))/sum(if(login_date_last='2021-01-28',1,0))
from dwt_user_topic;

3)查询数据

hive (gmall)> select * from ads_user_topic;

7.3.2 漏斗分析

统计“浏览首页->浏览商品详情页->加入购物车->下单->支付”的转化率

思路:统计各个行为的人数,然后计算比值。

1)建表语句

hive (gmall)>
drop table if exists ads_user_action_convert_day;
create external  table ads_user_action_convert_day(
    `dt` string COMMENT '统计日期',
    `home_count`  bigint COMMENT '浏览首页人数',
    `good_detail_count` bigint COMMENT '浏览商品详情页人数',
    `home2good_detail_convert_ratio` decimal(16,2) COMMENT '首页到商品详情转化率',
    `cart_count` bigint COMMENT '加入购物车的人数',
    `good_detail2cart_convert_ratio` decimal(16,2) COMMENT '商品详情页到加入购物车转化率',
    `order_count` bigint     COMMENT '下单人数',
    `cart2order_convert_ratio`  decimal(16,2) COMMENT '加入购物车到下单转化率',
    `payment_amount` bigint     COMMENT '支付人数',
    `order2payment_convert_ratio` decimal(16,2) COMMENT '下单到支付的转化率'
) COMMENT '漏斗分析'
row format delimited  fields terminated by '\t'
location '/warehouse/gmall/ads/ads_user_action_convert_day/';

2)数据装载

hive (gmall)>
with
tmp_uv as
(
    select
        '2021-01-28' dt,
        sum(if(array_contains(pages,'home'),1,0)) home_count,
        sum(if(array_contains(pages,'good_detail'),1,0)) good_detail_count
    from
    (
        select
            mid_id,
            collect_set(page_id) pages
        from dwd_page_log
        where dt='2021-01-28'
        and page_id in ('home','good_detail')
        group by mid_id
    )tmp
),
tmp_cop as
(
    select 
        '2021-01-28' dt,
        sum(if(cart_count>0,1,0)) cart_count,
        sum(if(order_count>0,1,0)) order_count,
        sum(if(payment_count>0,1,0)) payment_count
    from dws_user_action_daycount
    where dt='2021-01-28'
)
insert into table ads_user_action_convert_day
select
    tmp_uv.dt,
    tmp_uv.home_count,
    tmp_uv.good_detail_count,
    tmp_uv.good_detail_count/tmp_uv.home_count*100,
    tmp_cop.cart_count,
    tmp_cop.cart_count/tmp_uv.good_detail_count*100,
    tmp_cop.order_count,
    tmp_cop.order_count/tmp_cop.cart_count*100,
    tmp_cop.payment_count,
    tmp_cop.payment_count/tmp_cop.order_count*100
from tmp_uv
join tmp_cop
on tmp_uv.dt=tmp_cop.dt;

3)查询加载数据

hive (gmall)> select * from ads_user_action_convert_day;

7.4 商品主题

7.4.1 商品个数信息

1)建表语句

hive (gmall)>
drop table if exists ads_product_info;
create external table ads_product_info(
    `dt` string COMMENT '统计日期',
    `sku_num` string COMMENT 'sku个数',
    `spu_num` string COMMENT 'spu个数'
) COMMENT '商品个数信息'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_product_info';

2)导入数据

hive (gmall)>
insert into table ads_product_info
select
    '2021-01-28' dt,
    sku_num,
    spu_num
from
(
    select
        '2021-01-28' dt,
        count(*) sku_num
    from
        dwt_sku_topic
) tmp_sku_num
join
(
    select
        '2021-01-28' dt,
        count(*) spu_num
    from
    (
        select
            spu_id
        from
            dwt_sku_topic
        group by
            spu_id
    ) tmp_spu_id
) tmp_spu_num
on tmp_sku_num.dt=tmp_spu_num.dt;

3)查询结果数据

hive (gmall)> select * from ads_product_info;

7.4.2 商品销量排名

1)建表语句

hive (gmall)>
drop table if exists ads_product_sale_topN;
create external table ads_product_sale_topN(
    `dt` string COMMENT '统计日期',
    `sku_id` string COMMENT '商品ID',
    `payment_amount` bigint COMMENT '销量'
) COMMENT '商品销量排名'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_product_sale_topN';

2)导入数据

hive (gmall)>
insert into table ads_product_sale_topN
select
    '2021-01-28' dt,
    sku_id,
    payment_amount
from
    dws_sku_action_daycount
where
    dt='2021-01-28'
order by payment_amount desc
limit 10;

3)查询结果数据

hive (gmall)> select * from ads_product_sale_topN;

7.4.3 商品收藏排名

1)建表语句

hive (gmall)>
drop table if exists ads_product_favor_topN;
create external table ads_product_favor_topN(
    `dt` string COMMENT '统计日期',
    `sku_id` string COMMENT '商品ID',
    `favor_count` bigint COMMENT '收藏量'
) COMMENT '商品收藏排名'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_product_favor_topN';

2)导入数据

hive (gmall)>
insert into table ads_product_favor_topN
select
    '2021-01-28' dt,
    sku_id,
    favor_count
from
    dws_sku_action_daycount
where
    dt='2021-01-28'
order by favor_count desc
limit 10;

3)查询数据

hive (gmall)> select * from ads_product_favor_topN;

7.4.4 商品加入购物车排名

1)建表语句

hive (gmall)>
drop table if exists ads_product_cart_topN;
create external table ads_product_cart_topN(
    `dt` string COMMENT '统计日期',
    `sku_id` string COMMENT '商品ID',
    `cart_count` bigint COMMENT '加入购物车次数'
) COMMENT '商品加入购物车排名'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_product_cart_topN';

2)导入数据

hive (gmall)>
insert into table ads_product_cart_topN
select
    '2021-01-28' dt,
    sku_id,
    cart_count
from
    dws_sku_action_daycount
where
    dt='2021-01-28'
order by cart_count desc
limit 10;

3)查询数据

hive (gmall)> select * from ads_product_cart_topN;

7.4.5 商品退款率排名(最近30天)

hive (gmall)>
drop table if exists ads_product_refund_topN;
create external table ads_product_refund_topN(
    `dt` string COMMENT '统计日期',
    `sku_id` string COMMENT '商品ID',
    `refund_ratio` decimal(16,2) COMMENT '退款率'
) COMMENT '商品退款率排名'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_product_refund_topN';

2)导入数据

hive (gmall)>
insert into table ads_product_refund_topN
select
    '2021-01-28',
    sku_id,
    refund_last_30d_count/payment_last_30d_count*100 refund_ratio
from dwt_sku_topic
order by refund_ratio desc
limit 10;

7.4.6 商品差评率

1)建表语句

hive (gmall)>
drop table if exists ads_appraise_bad_topN;
create external table ads_appraise_bad_topN(
    `dt` string COMMENT '统计日期',
    `sku_id` string COMMENT '商品ID',
    `appraise_bad_ratio` decimal(16,2) COMMENT '差评率'
) COMMENT '商品差评率'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_appraise_bad_topN';

2)导入数据

hive (gmall)>
insert into table ads_appraise_bad_topN
select
    '2021-01-28' dt,
    sku_id,
appraise_bad_count/(appraise_good_count+appraise_mid_count+appraise_bad_count+appraise_default_count) appraise_bad_ratio
from
    dws_sku_action_daycount
where
    dt='2021-01-28'
order by appraise_bad_ratio desc
limit 10;

3)查询数据

hive (gmall)> select * from ads_appraise_bad_topN;

7.5 营销主题(用户+商品+购买行为)

7.5.1 下单数目统计

需求分析:统计每日下单数,下单金额及下单用户数。

1)建表语句

hive (gmall)>
drop table if exists ads_order_daycount;
create external table ads_order_daycount(
    dt string comment '统计日期',
    order_count bigint comment '单日下单笔数',
    order_amount bigint comment '单日下单金额',
    order_users bigint comment '单日下单用户数'
) comment '下单数目统计'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_order_daycount';

2)导入数据

hive (gmall)>
insert into table ads_order_daycount
select
    '2021-01-28',
    sum(order_count),
    sum(order_amount),
    sum(if(order_count>0,1,0))
from dws_user_action_daycount
where dt='2021-01-28';

3)查询数据

hive (gmall)> select * from ads_order_daycount;

7.5.2 支付信息统计

每日支付金额、支付人数、支付商品数、支付笔数以及下单到支付的平均时长(取自DWD)

1)建表

hive (gmall)>
drop table if exists ads_payment_daycount;
create external table ads_payment_daycount(
    dt string comment '统计日期',
    order_count bigint comment '单日支付笔数',
    order_amount bigint comment '单日支付金额',
    payment_user_count bigint comment '单日支付人数',
    payment_sku_count bigint comment '单日支付商品数',
    payment_avg_time decimal(16,2) comment '下单到支付的平均时长,取分钟数'
) comment '支付信息统计'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_payment_daycount';

2)导入数据

hive (gmall)>
insert into table ads_payment_daycount
select
    tmp_payment.dt,
    tmp_payment.payment_count,
    tmp_payment.payment_amount,
    tmp_payment.payment_user_count,
    tmp_skucount.payment_sku_count,
    tmp_time.payment_avg_time
from
(
    select
        '2021-01-28' dt,
        sum(payment_count) payment_count,
        sum(payment_amount) payment_amount,
        sum(if(payment_count>0,1,0)) payment_user_count
    from dws_user_action_daycount
    where dt='2021-01-28'
)tmp_payment
join
(
    select
        '2021-01-28' dt,
        sum(if(payment_count>0,1,0)) payment_sku_count 
    from dws_sku_action_daycount
    where dt='2021-01-28'
)tmp_skucount on tmp_payment.dt=tmp_skucount.dt
join
(
    select
        '2021-01-28' dt,
        sum(unix_timestamp(payment_time)-unix_timestamp(create_time))/count(*)/60 payment_avg_time
    from dwd_fact_order_info
    where dt='2021-01-28'
    and payment_time is not null
)tmp_time on tmp_payment.dt=tmp_time.dt;

3)查询数据

hive (gmall)> select * from ads_payment_daycount;

7.5.3 品牌复购率

1)建表语句

hive (gmall)>
drop table ads_sale_tm_category1_stat_mn;
create external table ads_sale_tm_category1_stat_mn
(  
    tm_id string comment '品牌id',
    category1_id string comment '1级品类id ',
    category1_name string comment '1级品类名称 ',
    buycount   bigint comment  '购买人数',
    buy_twice_last bigint  comment '两次以上购买人数',
    buy_twice_last_ratio decimal(16,2)  comment  '单次复购率',
    buy_3times_last   bigint comment   '三次以上购买人数',
    buy_3times_last_ratio decimal(16,2)  comment  '多次复购率',
    stat_mn string comment '统计月份',
    stat_date string comment '统计日期' 
) COMMENT '品牌复购率统计'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_sale_tm_category1_stat_mn/';

2)数据导入

hive (gmall)>
with 
tmp_order as
(
    select
        user_id,
        order_stats_struct.sku_id sku_id,
        order_stats_struct.order_count order_count
    from dws_user_action_daycount lateral view explode(order_detail_stats) tmp as order_stats_struct
    where date_format(dt,'yyyy-MM')=date_format('2021-01-28','yyyy-MM')
),
tmp_sku as
(
    select
        id,
        tm_id,
        category1_id,
        category1_name
    from dwd_dim_sku_info
    where dt='2021-01-28'
)
insert into table ads_sale_tm_category1_stat_mn
select
    tm_id,
    category1_id,
    category1_name,
    sum(if(order_count>=1,1,0)) buycount,
    sum(if(order_count>=2,1,0)) buyTwiceLast,
    sum(if(order_count>=2,1,0))/sum( if(order_count>=1,1,0)) buyTwiceLastRatio,
    sum(if(order_count>=3,1,0))  buy3timeLast  ,
    sum(if(order_count>=3,1,0))/sum( if(order_count>=1,1,0)) buy3timeLastRatio ,
    date_format('2021-01-28' ,'yyyy-MM') stat_mn,
    '2021-01-28' stat_date
from
(
    select 
        tmp_order.user_id,
        tmp_sku.category1_id,
        tmp_sku.category1_name,
        tmp_sku.tm_id,
        sum(order_count) order_count
    from tmp_order
    join tmp_sku
    on tmp_order.sku_id=tmp_sku.id
    group by tmp_order.user_id,tmp_sku.category1_id,tmp_sku.category1_name,tmp_sku.tm_id
)tmp
group by tm_id, category1_id, category1_name;

3)查询数据

hive (gmall)> select * from ads_sale_tm_category1_stat_mn;

7.6 地区主题

7.6.1 地区主题信息

1)建表语句

hive (gmall)>
drop table if exists ads_area_topic;
create external table ads_area_topic(
    `dt` string COMMENT '统计日期',
    `id` bigint COMMENT '编号',
    `province_name` string COMMENT '省份名称',
    `area_code` string COMMENT '地区编码',
    `iso_code` string COMMENT 'iso编码',
    `region_id` string COMMENT '地区ID',
    `region_name` string COMMENT '地区名称',
    `login_day_count` bigint COMMENT '当天活跃设备数',
    `order_day_count` bigint COMMENT '当天下单次数',
    `order_day_amount` decimal(16,2) COMMENT '当天下单金额',
    `payment_day_count` bigint COMMENT '当天支付次数',
    `payment_day_amount` decimal(16,2) COMMENT '当天支付金额'
) COMMENT '地区主题信息'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_area_topic/';

2)数据装载

hive (gmall)>
insert into table ads_area_topic
select
    '2021-01-28',
    id,
    province_name,
    area_code,
    iso_code,
    region_id,
    region_name,
    login_day_count,
    order_day_count,
    order_day_amount,
    payment_day_count,
    payment_day_amount
from dwt_area_topic;

3)查看结果

hive (gmall)> select * from ads_area_topic;

7.7 ADS层导入脚本

1)在/home/atguigu/bin目录下创建脚本dwt_to_ads.sh

[atguigu@hadoop105 bin]$ vim dwt_to_ads.sh

在脚本中填写如下内容

#!/bin/bash

hive=/opt/module/hive/bin/hive
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
    do_date=$1
else 
    do_date=`date -d "-1 day" +%F`
fi

sql="
set mapreduce.job.queuename=hive;
insert into table ${APP}.ads_uv_count 
select  
    '$do_date' dt,
    daycount.ct,
    wkcount.ct,
    mncount.ct,
    if(date_add(next_day('$do_date','MO'),-1)='$do_date','Y','N') ,
    if(last_day('$do_date')='$do_date','Y','N') 
from 
(
    select  
        '$do_date' dt,
        count(*) ct
    from ${APP}.dwt_uv_topic
    where login_date_last='$do_date'  
)daycount join 
( 
    select  
        '$do_date' dt,
        count (*) ct
    from ${APP}.dwt_uv_topic
    where login_date_last>=date_add(next_day('$do_date','MO'),-7) 
    and login_date_last<= date_add(next_day('$do_date','MO'),-1) 
) wkcount on daycount.dt=wkcount.dt
join 
( 
    select  
        '$do_date' dt,
        count (*) ct
    from ${APP}.dwt_uv_topic
    where date_format(login_date_last,'yyyy-MM')=date_format('$do_date','yyyy-MM')  
)mncount on daycount.dt=mncount.dt;

insert into table ${APP}.ads_new_mid_count 
select
    login_date_first,
    count(*)
from ${APP}.dwt_uv_topic
where login_date_first='$do_date'
group by login_date_first;

insert into table ${APP}.ads_silent_count
select
    '$do_date',
    count(*) 
from ${APP}.dwt_uv_topic
where login_date_first=login_date_last
and login_date_last<=date_add('$do_date',-7);


insert into table ${APP}.ads_back_count
select
'$do_date',
concat(date_add(next_day('$do_date','MO'),-7),'_', date_add(next_day('$do_date','MO'),-1)),
    count(*)
from
(
    select
        mid_id
    from ${APP}.dwt_uv_topic
    where login_date_last>=date_add(next_day('$do_date','MO'),-7) 
    and login_date_last<= date_add(next_day('$do_date','MO'),-1)
    and login_date_first=date_add(next_day('$do_date','MO'),-7*2) 
    and dt<= date_add(next_day('$do_date','MO'),-7-1) 
    group by mid_id
)last_wk
on current_wk.mid_id=last_wk.mid_id
where last_wk.mid_id is null;

insert into table ${APP}.ads_wastage_count
select
     '$do_date',
     count(*)
from 
(
    select 
        mid_id
    from ${APP}.dwt_uv_topic
    where login_date_last<=date_add('$do_date',-7)
    group by mid_id
)t1;

insert into table ${APP}.ads_user_retention_day_rate
select
    '$do_date',--统计日期
    date_add('$do_date',-1),--新增日期
    1,--留存天数
    sum(if(login_date_first=date_add('$do_date',-1) and login_date_last='$do_date',1,0)),--$do_date的1日留存数
    sum(if(login_date_first=date_add('$do_date',-1),1,0)),--$do_date新增
    sum(if(login_date_first=date_add('$do_date',-1) and login_date_last='$do_date',1,0))/sum(if(login_date_first=date_add('$do_date',-1),1,0))*100
from ${APP}.dwt_uv_topic

union all

select
    '$do_date',--统计日期
    date_add('$do_date',-2),--新增日期
    2,--留存天数
    sum(if(login_date_first=date_add('$do_date',-2) and login_date_last='$do_date',1,0)),--$do_date的2日留存数
    sum(if(login_date_first=date_add('$do_date',-2),1,0)),--$do_date新增
    sum(if(login_date_first=date_add('$do_date',-2) and login_date_last='$do_date',1,0))/sum(if(login_date_first=date_add('$do_date',-2),1,0))*100
from ${APP}.dwt_uv_topic

union all

select
    '$do_date',--统计日期
    date_add('$do_date',-3),--新增日期
    3,--留存天数
    sum(if(login_date_first=date_add('$do_date',-3) and login_date_last='$do_date',1,0)),--$do_date的3日留存数
    sum(if(login_date_first=date_add('$do_date',-3),1,0)),--$do_date新增
    sum(if(login_date_first=date_add('$do_date',-3) and login_date_last='$do_date',1,0))/sum(if(login_date_first=date_add('$do_date',-3),1,0))*100
from ${APP}.dwt_uv_topic;


insert into table ${APP}.ads_continuity_wk_count
select
    '$do_date',
    concat(date_add(next_day('$do_date','MO'),-7*3),'_',date_add(next_day('$do_date','MO'),-1)),
    count(*)
from
(
    select
        mid_id
    from
    (
        select
            mid_id
        from ${APP}.dws_uv_detail_daycount
        where dt>=date_add(next_day('$do_date','monday'),-7)
        and dt<=date_add(next_day('$do_date','monday'),-1)
        group by mid_id

        union all

        select
            mid_id
        from ${APP}.dws_uv_detail_daycount
        where dt>=date_add(next_day('$do_date','monday'),-7*2)
        and dt<=date_add(next_day('$do_date','monday'),-7-1)
        group by mid_id

        union all

        select
            mid_id
        from ${APP}.dws_uv_detail_daycount
        where dt>=date_add(next_day('$do_date','monday'),-7*3)
        and dt<=date_add(next_day('$do_date','monday'),-7*2-1)
        group by mid_id
    )t1
    group by mid_id
    having count(*)=3
)t2;


insert into table ${APP}.ads_continuity_uv_count
select
    '$do_date',
    concat(date_add('$do_date',-6),'_','$do_date'),
    count(*)
from
(
    select mid_id
    from
    (
        select mid_id      
        from
        (
            select 
                mid_id,
                date_sub(dt,rank) date_dif
            from
            (
                select 
                    mid_id,
                    dt,
                    rank() over(partition by mid_id order by dt) rank
                from ${APP}.dws_uv_detail_daycount
                where dt>=date_add('$do_date',-6) and dt<='$do_date'
            )t1
        )t2 
        group by mid_id,date_dif
        having count(*)>=3
    )t3 
    group by mid_id
)t4;


insert into table ${APP}.ads_user_topic
select
    '$do_date',
    sum(if(login_date_last='$do_date',1,0)),
    sum(if(login_date_first='$do_date',1,0)),
    sum(if(payment_date_first='$do_date',1,0)),
    sum(if(payment_count>0,1,0)),
    count(*),
    sum(if(login_date_last='$do_date',1,0))/count(*),
    sum(if(payment_count>0,1,0))/count(*),
    sum(if(login_date_first='$do_date',1,0))/sum(if(login_date_last='$do_date',1,0))
from ${APP}.dwt_user_topic;

with
tmp_uv as
(
    select
        '$do_date' dt,
        sum(if(array_contains(pages,'home'),1,0)) home_count,
        sum(if(array_contains(pages,'good_detail'),1,0)) good_detail_count
    from
    (
        select
            mid_id,
            collect_set(page_id) pages
        from ${APP}.dwd_page_log
        where dt='$do_date'
        and page_id in ('home','good_detail')
        group by mid_id
    )tmp
),
tmp_cop as
(
    select 
        '$do_date' dt,
        sum(if(cart_count>0,1,0)) cart_count,
        sum(if(order_count>0,1,0)) order_count,
        sum(if(payment_count>0,1,0)) payment_count
    from ${APP}.dws_user_action_daycount
    where dt='$do_date'
)
insert into table ${APP}.ads_user_action_convert_day
select
    tmp_uv.dt,
    tmp_uv.home_count,
    tmp_uv.good_detail_count,
    tmp_uv.good_detail_count/tmp_uv.home_count*100,
    tmp_cop.cart_count,
    tmp_cop.cart_count/tmp_uv.good_detail_count*100,
    tmp_cop.order_count,
    tmp_cop.order_count/tmp_cop.cart_count*100,
    tmp_cop.payment_count,
    tmp_cop.payment_count/tmp_cop.order_count*100
from tmp_uv
join tmp_cop
on tmp_uv.dt=tmp_cop.dt;

insert into table ${APP}.ads_product_info
select
    '$do_date' dt,
    sku_num,
    spu_num
from
(
    select
        '$do_date' dt,
        count(*) sku_num
    from
        ${APP}.dwt_sku_topic
) tmp_sku_num
join
(
    select
        '$do_date' dt,
        count(*) spu_num
    from
    (
        select
            spu_id
        from
            ${APP}.dwt_sku_topic
        group by
            spu_id
    ) tmp_spu_id
) tmp_spu_num
on
    tmp_sku_num.dt=tmp_spu_num.dt;


insert into table ${APP}.ads_product_sale_topN
select
    '$do_date' dt,
    sku_id,
    payment_amount
from
    ${APP}.dws_sku_action_daycount
where
    dt='$do_date'
order by payment_amount desc
limit 10;

insert into table ${APP}.ads_product_favor_topN
select
    '$do_date' dt,
    sku_id,
    favor_count
from
    ${APP}.dws_sku_action_daycount
where
    dt='$do_date'
order by favor_count desc
limit 10;

insert into table ${APP}.ads_product_cart_topN
select
    '$do_date' dt,
    sku_id,
    cart_count
from
    ${APP}.dws_sku_action_daycount
where
    dt='$do_date'
order by cart_count desc
limit 10;


insert into table ${APP}.ads_product_refund_topN
select
    '$do_date',
    sku_id,
    refund_last_30d_count/payment_last_30d_count*100 refund_ratio
from ${APP}.dwt_sku_topic
order by refund_ratio desc
limit 10;


insert into table ${APP}.ads_appraise_bad_topN
select
    '$do_date' dt,
    sku_id,
appraise_bad_count/(appraise_good_count+appraise_mid_count+appraise_bad_count+appraise_default_count) appraise_bad_ratio
from
    ${APP}.dws_sku_action_daycount
where
    dt='$do_date'
order by appraise_bad_ratio desc
limit 10;


insert into table ${APP}.ads_order_daycount
select
    '$do_date',
    sum(order_count),
    sum(order_amount),
    sum(if(order_count>0,1,0))
from ${APP}.dws_user_action_daycount
where dt='$do_date';


insert into table ${APP}.ads_payment_daycount
select
    tmp_payment.dt,
    tmp_payment.payment_count,
    tmp_payment.payment_amount,
    tmp_payment.payment_user_count,
    tmp_skucount.payment_sku_count,
    tmp_time.payment_avg_time
from
(
    select
        '$do_date' dt,
        sum(payment_count) payment_count,
        sum(payment_amount) payment_amount,
        sum(if(payment_count>0,1,0)) payment_user_count
    from ${APP}.dws_user_action_daycount
    where dt='$do_date'
)tmp_payment
join
(
    select
        '$do_date' dt,
        sum(if(payment_count>0,1,0)) payment_sku_count 
    from ${APP}.dws_sku_action_daycount
    where dt='$do_date'
)tmp_skucount on tmp_payment.dt=tmp_skucount.dt
join
(
    select
        '$do_date' dt,
        sum(unix_timestamp(payment_time)-unix_timestamp(create_time))/count(*)/60 payment_avg_time
    from ${APP}.dwd_fact_order_info
    where dt='$do_date'
    and payment_time is not null
)tmp_time on tmp_payment.dt=tmp_time.dt;


with 
tmp_order as
(
    select
        user_id,
        order_stats_struct.sku_id sku_id,
        order_stats_struct.order_count order_count
    from ${APP}.dws_user_action_daycount lateral view explode(order_detail_stats) tmp as order_stats_struct
    where date_format(dt,'yyyy-MM')=date_format('$do_date','yyyy-MM')
),
tmp_sku as
(
    select
        id,
        tm_id,
        category1_id,
        category1_name
    from ${APP}.dwd_dim_sku_info
    where dt='$do_date'
)
insert into table ${APP}.ads_sale_tm_category1_stat_mn
select
    tm_id,
    category1_id,
    category1_name,
    sum(if(order_count>=1,1,0)) buycount,
    sum(if(order_count>=2,1,0)) buyTwiceLast,
    sum(if(order_count>=2,1,0))/sum( if(order_count>=1,1,0)) buyTwiceLastRatio,
    sum(if(order_count>=3,1,0))  buy3timeLast  ,
    sum(if(order_count>=3,1,0))/sum( if(order_count>=1,1,0)) buy3timeLastRatio ,
    date_format('$do_date' ,'yyyy-MM') stat_mn,
    '$do_date' stat_date
from
(
    select 
        tmp_order.user_id,
        tmp_sku.category1_id,
        tmp_sku.category1_name,
        tmp_sku.tm_id,
        sum(order_count) order_count
    from tmp_order
    join tmp_sku
    on tmp_order.sku_id=tmp_sku.id
    group by tmp_order.user_id,tmp_sku.category1_id,tmp_sku.category1_name,tmp_sku.tm_id
)tmp
group by tm_id, category1_id, category1_name;


insert into table ${APP}.ads_area_topic
select
    '$do_date',
    id,
    province_name,
    area_code,
    iso_code,
    region_id,
    region_name,
    login_day_count,
    order_day_count,
    order_day_amount,
    payment_day_count,
    payment_day_amount
from ${APP}.dwt_area_topic;

"

$hive -e "$sql"

2)增加脚本执行权限

[atguigu@hadoop105 bin]$ chmod 777 dwt_to_ads.sh

3)执行脚本导入数据

[atguigu@hadoop105 bin]$ dwt_to_ads.sh 2021-01-28

4)查看导入数据

hive (gmall)> 
select * from ads_uv_count where dt='2021-01-28';
select * from ads_new_mid_count;
select * from ads_silent_count where dt='2021-01-28';
select * from ads_back_count where dt='2021-01-28';
select * from ads_wastage_count where dt='2021-01-28';
select * from ads_user_retention_day_rate;
select * from ads_continuity_wk_count where dt='2021-01-28';
select * from ads_continuity_uv_count where dt='2021-01-28';
select * from ads_user_topic where dt='2021-01-28';
select * from ads_user_action_convert_day where dt='2021-01-28';
select * from ads_product_info where dt='2021-01-28';
select * from ads_product_sale_topN where dt='2021-01-28';
select * from ads_product_favor_topN where dt='2021-01-28';
select * from ads_product_cart_topN where dt='2021-01-28';
select * from ads_product_refund_topN where dt='2021-01-28';
select * from ads_appraise_bad_topN where dt='2021-01-28';
select * from ads_order_daycount where dt='2021-01-28';
select * from ads_payment_daycount where dt='2021-01-28';
select * from ads_sale_tm_category1_stat_mn;
select * from ads_area_topic where dt='2021-01-28';

第8章 Azkaban调度

8.1 Azkaban部署

Azkaban部署:https://blog.csdn.net/qq_39346903/article/details/113644668

8.2 创建MySQL数据库和表

1)创建gmall_report数据库

image-20210203181937476

注:SQL语句

CREATE DATABASE `gmall_report` CHARACTER SET 'utf8' COLLATE 'utf8_general_ci';

2)创建表

(1)创建用户主题表

DROP TABLE IF EXISTS `ads_user_topic`;
CREATE TABLE `ads_user_topic`  (
  `dt` date NOT NULL,
  `day_users` bigint(255) NULL DEFAULT NULL,
  `day_new_users` bigint(255) NULL DEFAULT NULL,
  `day_new_payment_users` bigint(255) NULL DEFAULT NULL,
  `payment_users` bigint(255) NULL DEFAULT NULL,
  `users` bigint(255) NULL DEFAULT NULL,
  `day_users2users` double(255, 2) NULL DEFAULT NULL,
  `payment_users2users` double(255, 2) NULL DEFAULT NULL,
  `day_new_users2users` double(255, 2) NULL DEFAULT NULL,
  PRIMARY KEY (`dt`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;

(2)创建地区主题表

DROP TABLE IF EXISTS `ads_area_topic`;
CREATE TABLE `ads_area_topic`  (
  `dt` date NOT NULL,
  `id` int(11) NULL DEFAULT NULL,
  `province_name` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `area_code` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `iso_code` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
  `region_id` int(11) NULL DEFAULT NULL,
  `region_name` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `login_day_count` bigint(255) NULL DEFAULT NULL,
  `order_day_count` bigint(255) NULL DEFAULT NULL,
  `order_day_amount` double(255, 2) NULL DEFAULT NULL,
  `payment_day_count` bigint(255) NULL DEFAULT NULL,
  `payment_day_amount` double(255, 2) NULL DEFAULT NULL,
  PRIMARY KEY (`dt`, `iso_code`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;

3)其余ads层表(略)

8.3 Sqoop导出脚本

1)编写Sqoop导出脚本

在/home/atguigu/bin目录下创建脚本hdfs_to_mysql.sh

[atguigu@hadoop105 bin]$ vim hdfs_to_mysql.sh

​ 在脚本中填写如下内容

#!/bin/bash

hive_db_name=gmall
mysql_db_name=gmall_report

export_data() {
/opt/module/sqoop/bin/sqoop export \
-Dmapreduce.job.queuename=hive \
--connect "jdbc:mysql://hadoop105:3306/${mysql_db_name}?useUnicode=true&characterEncoding=utf-8"  \
--username root \
--password root \
--table $1 \
--num-mappers 1 \
--export-dir /warehouse/$hive_db_name/ads/$1 \
--input-fields-terminated-by "\t" \
--update-mode allowinsert \
--update-key $2 \
--input-null-string '\\N'    \
--input-null-non-string '\\N'
}

case $1 in
  "ads_uv_count")
     export_data "ads_uv_count" "dt"
;;
  "ads_user_action_convert_day") 
     export_data "ads_user_action_convert_day" "dt"
;;
  "ads_user_topic")
     export_data "ads_user_topic" "dt"
;;
  "ads_area_topic")
     export_data "ads_area_topic" "dt,iso_code"
;;
   "all")
     export_data "ads_user_topic" "dt"
     export_data "ads_area_topic" "dt,iso_code"
     #其余表省略未写
;;
esac

关于导出update还是insert的问题

  • -update-mode:

updateonly 只更新,无法插入新数据

​ allowinsert 允许新增

  • -update-key:允许更新的情况下,指定哪些字段匹配视为同一条数据,进行更新而不增加。多个字段用逗号分隔。

  • –input-null-string和–input-null-non-string:

分别表示,将字符串列和非字符串列的空串和“null”转义。

官网地址:http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html

Sqoop will by default import NULL values as string null. Hive is however using string \N to denote NULL values and therefore predicates dealing with NULL(like IS NULL) will not work correctly. You should append parameters --null-string and --null-non-string in case of import job or --input-null-string and --input-null-non-string in case of an export job if you wish to properly preserve NULL values. Because sqoop is using those parameters in generated code, you need to properly escape value \N to [\N](file://N):

Hive中的Null在底层是以“\N”来存储,而MySQL中的Null在底层就是Null,为了保证数据两端的一致性。在导出数据时采用–input-null-string和–input-null-non-string两个参数。导入数据时采用–null-string和–null-non-string。

3)执行Sqoop导出脚本

[atguigu@hadoop105 bin]$ chmod 777 hdfs_to_mysql.sh.sh
[atguigu@hadoop105 bin]$ hdfs_to_mysql.sh all

8.4 会员主题指标获取的全调度流程

8.4.1 数据准备

1)用户行为数据准备

(1)修改/opt/module/applog下的application.properties

#业务日期
mock.date=2021-01-30

注意:分发至其他需要生成数据的节点

[atguigu@hadoop105 applog]$ xsync application.properties

(2)生成数据

[atguigu@hadoop105 applog]$ cluster.sh start
[atguigu@hadoop105 bin]$ lg.sh

注意:生成数据之后,记得查看HDFS数据是否存在!

(3)观察HDFS的/origin_data/gmall/log/topic_log/2021-01-30路径是否有数据

大数据电商离线数仓项目-下篇_第8张图片

2)业务数据准备

(1)修改/opt/module/db_log下的application.properties

[atguigu@hadoop105 db_log]$ vim application.properties
#业务日期
mock.date=2021-01-30

(2)生成数据

[atguigu@hadoop105 db_log]$ java -jar gmall2020-mock-db-2020-05-18.jar

(3)观察SQLyog中order_infor表中operate_time中有2021-01-30日期的数据

大数据电商离线数仓项目-下篇_第9张图片

8.4.2 编译写Azkaban工作流程配置文件

1)编写azkaban.project文件,内容如下

azkaban-flow-version: 2.0

2)编写gmall.flow文件,内容如下

nodes:
  - name: mysql_to_hdfs
    type: command
    config:
     command: /home/atguigu/bin/mysql_to_hdfs.sh all ${dt}
    
  - name: hdfs_to_ods_log
    type: command
    config:
     command: /home/atguigu/bin/hdfs_to_ods_log.sh ${dt}
     
  - name: hdfs_to_ods_db
    type: command
    dependsOn: 
     - mysql_to_hdfs
    config: 
     command: /home/atguigu/bin/hdfs_to_ods_db.sh all ${dt}
     
  - name: ods_to_dwd_log
    type: command
    dependsOn: 
     - hdfs_to_ods_log
    config: 
     command: /home/atguigu/bin/ods_to_dwd_log.sh ${dt}
    
  - name: ods_to_dwd_db
    type: command
    dependsOn: 
     - hdfs_to_ods_db
    config: 
     command: /home/atguigu/bin/ods_to_dwd_db.sh all ${dt}
    
  - name: dwd_to_dws
    type: command
    dependsOn:
     - ods_to_dwd_log
     - ods_to_dwd_db
    config:
     command: /home/atguigu/bin/dwd_to_dws.sh ${dt}
    
  - name: dws_to_dwt
    type: command
    dependsOn:
     - dwd_to_dws
    config:
     command: /home/atguigu/bin/dws_to_dwt.sh ${dt}
    
  - name: dwt_to_ads
    type: command
    dependsOn: 
     - dws_to_dwt
    config:
     command: /home/atguigu/bin/dwt_to_ads.sh ${dt}
     
  - name: hdfs_to_mysql
    type: command
    dependsOn:
     - dwt_to_ads
    config:
      command: /home/atguigu/bin/hdfs_to_mysql.sh all

3)将azkaban.project、gmall.flow文件压缩到一个zip文件,文件名称必须是英文。

gmall.zip

4)在WebServer新建项目:http://hadoop105:8081/index

image-20210203182557874

5)给项目名称命名和添加项目描述

大数据电商离线数仓项目-下篇_第10张图片

6)gmall.zip文件上传

image-20210203182607376

7)选择上传的文件

大数据电商离线数仓项目-下篇_第11张图片

8)查看任务流

大数据电商离线数仓项目-下篇_第12张图片

9)详细任务流展示

大数据电商离线数仓项目-下篇_第13张图片

10)配置输入dt时间参数

大数据电商离线数仓项目-下篇_第14张图片

大数据电商离线数仓项目-下篇_第15张图片

10)执行成功

大数据电商离线数仓项目-下篇_第16张图片

11)在SQLyog上查看结果

大数据电商离线数仓项目-下篇_第17张图片

8.4.3 Azkaban多Executor模式下注意事项

Azkaban多Executor模式是指,在集群中多个节点部署Executor。在这种模式下, Azkaban web Server会根据策略,选取其中一个Executor去执行任务。

由于我们需要交给Azkaban调度的脚本,以及脚本需要的Hive,Sqoop等应用只在hadoop105部署了,为保证任务顺利执行,我们须在以下两种方案任选其一,推荐使用方案二。

方案一:指定特定的Executor(hadoop105)去执行任务。

1)在MySQL中azkaban数据库executors表中,查询hadoop105上的Executor的id。

mysql> use azkaban;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> select * from executors;
+----+-----------+-------+--------+
| id | host          | port  | active |
+----+-----------+-------+--------+
|  1   | hadoop106 | 35985 |      1 |
|  2   | hadoop107 | 36363 |      1 |
|  3   | hadoop105 | 12321 |      1 |
+----+-----------+-------+--------+
3 rows in set (0.00 sec)

2)在执行工作流程时加入useExecutor属性,如下

大数据电商离线数仓项目-下篇_第18张图片

方案二:在Executor所在所有节点部署任务所需脚本和应用。

1)分发脚本、hive以及sqoop

[atguigu@hadoop105 ~]$ xsync /home/atguigu/bin/
[atguigu@hadoop105 ~]$ xsync /opt/module/hive
[atguigu@hadoop105 ~]$ xsync /opt/module/sqoop
xsync /opt/module/spark
环境变量

上一篇:电商数仓系统1

你可能感兴趣的:(离线数仓,数据仓库,hive,大数据)