sklearn实现逻辑回归_以python为工具【Python机器学习系列(十)】
ʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞ
ʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞ
大家好,我是侯小啾!
今天分享的内容是,通过python的sklearn库实现线性逻辑回归和非线性逻辑回归。
第一步,读取并提取数据:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
# 读取数据
data = np.genfromtxt("data.csv", delimiter=",")
x_data = data[:, :-1]
y_data = data[:, -1]
然后定义绘制散点图的函数,为将数据分布更直观地展示:
def plot_logi():
# 初始化列表
x_0 = []
y_0 = []
x_1 = []
y_1 = []
# 分割不同类别的数据
for i in range(len(x_data)):
# 取类别为0的数据
if y_data[i] == 0:
# 将特征1添加到x_0中
x_0.append(x_data[i, 0])
# 将特征2添加到y_0中
y_0.append(x_data[i, 1])
else:
# 将特征1添加到x_1中
x_1.append(x_data[i, 0])
# 将特征2添加到y_1中
y_1.append(x_data[i, 1])
# 画图
plt.scatter(x_0, y_0, c="skyblue", marker="o", label="class0")
plt.scatter(x_1, y_1, c="red", marker="x", label="class1")
plt.legend()
输出数据分布散点图:
plot_logi()
plt.show()
第三步,训练模型
logistic = LogisticRegression()
logistic.fit(x_data, y_data)
# 截距
print(logistic.intercept_)
# 系数:theta1 theta2
print(logistic.coef_)
# 预测
pred = logistic.predict(x_data)
# 输出评分
score = logistic.score(x_data, y_data)
print(score)
绘制出带有决策边界的散点图:
# 绘制散点
plot_logi()
# 绘制决策边界
x_test = np.array([[-4], [3]])
y_test = -(x_test*logistic.coef_[0, 0]+logistic.intercept_)/logistic.coef_[0, 1]
plt.plot(x_test, y_test)
plt.show()
python实现非线性逻辑回归,首先使用make_gaussian_quantiles获取一组高斯分布的数据集,代码及数据分布如下:
import matplotlib.pyplot as plt
from sklearn import linear_model
from sklearn.preprocessing import PolynomialFeatures
from sklearn.datasets import make_gaussian_quantiles
# 获取高斯分布的数据集,500个样本,2个特征,2分类
x_data, y_data = make_gaussian_quantiles(n_samples=500, n_features=2, n_classes=2)
# 绘制散点图
plt.scatter(x_data[:, 0], x_data[:, 1],c=y_data)
plt.show()
然后转换数据并训练模型以实现非线性逻辑回归:
# 数据转换,最高次项为五次项
poly_reg = PolynomialFeatures(degree=5)
x_poly = poly_reg.fit_transform(x_data)
# 定义逻辑回归模型
logistic = linear_model.LogisticRegression()
logistic.fit(x_poly, y_data)
score = logistic.score(x_poly, y_data)
print(score)
以乳腺癌数据集为例,建立线性逻辑回归模型,并输出准确率,精确率,召回率三大指标,代码如下所示:
from sklearn.datasets import load_breast_cancer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import recall_score
from sklearn.metrics import precision_score
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
import warnings
warnings.filterwarnings("ignore")
# 获取数据
cancer = load_breast_cancer()
# 分割数据
X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, test_size=0.2)
# 创建估计器
model = LogisticRegression()
# 训练
model.fit(X_train, y_train)
# 训练集准确率
train_score = model.score(X_train, y_train)
# 测试集准确率
test_score = model.score(X_test, y_test)
print('train score:{train_score:.6f};test score:{test_score:.6f}'.format(train_score=train_score, test_score=test_score))
print("==================================================================================")
# 再对X_test进行预测
y_pred = model.predict(X_test)
print(y_pred)
# 准确率 所有的判断中有多少判断正确的
accuracy_score_value = accuracy_score(y_test, y_pred)
# 精确率 预测为正的样本中有多少是对的
precision_score_value = precision_score(y_test, y_pred)
# 召回率 样本中有多少正样本被预测正确了
recall_score_value = recall_score(y_test, y_pred)
print("准确率:", accuracy_score_value)
print("精确率:", precision_score_value)
print("召回率:", recall_score_value)
# 输出报告模型评估报告
classification_report_value = classification_report(y_test, y_pred)
print(classification_report_value)
本次分享就到这里,小啾感谢您的关注与支持!
꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ꧔ꦿ
本专栏更多好文欢迎点击下方连接:
1.初识机器学习前导内容_你需要知道的基本概念罗列_以PY为工具 【Python机器学习系列(一)】
2.sklearn库数据标准预处理合集_【Python机器学习系列(二)】
3.K_近邻算法_分类Ionosphere电离层数据【python机器学习系列(三)】
4.python机器学习 一元线性回归 梯度下降法的实现 【Python机器学习系列(四)】
5.sklearn实现一元线性回归 【Python机器学习系列(五)】
6.多元线性回归_梯度下降法实现【Python机器学习系列(六)】
7.sklearn实现多元线性回归 【Python机器学习系列(七)】
8.sklearn实现多项式线性回归_一元/多元 【Python机器学习系列(八)】
9.逻辑回归原理梳理_以python为工具 【Python机器学习系列(九)】