YOLOv5改进之添加注意力机制

本文主要给大家讲解一下,如何在yolov5中添加注意力机制,

这里提供SE通道注意力的改进方法,其他注意力的添加方法,大同小异

首先找到SE注意力机制的pytorch代码

class SELayer(nn.Module):
    def __init__(self, c1, r=16):
        super(SELayer, self).__init__()
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.l1 = nn.Linear(c1, c1 // r, bias=False)
        self.relu = nn.ReLU(inplace=True)
        self.l2 = nn.Linear(c1 // r, c1, bias=False)
        self.sig = nn.Sigmoid()

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avgpool(x).view(b, c)
        y = self.l1(y)
        y = self.relu(y)
        y = self.l2(y)
        y = self.sig(y)
        y = y.view(b, c, 1, 1)
        return x * y.expand_as(x)

直接把SE注意力机制的程序,复制到models文件夹下面的common.py文件中

然后找到yolo.py,在这个文件中找到下面这一行

 然后把SE添加到这个注册表里,

 直接在C3Ghost后面加上SELayer

然后是要修改yaml文件,对于SE这种即插即用的注意力机制,输入和输出的通道数相同,所以不会影响其他模块的运行

YOLOv5改进之添加注意力机制_第1张图片

注意力机制也可以插在其他地方,只要注意把通道数对应好就行

然后head部分也要进行相应的修改,因为我们多加了一层,所以需要保持head以及最后的输出层不变就得稍微改一下head部分,同样,注意力机制也可以放在head里面,跟加在backbone里面的方法相同。

YOLOv5改进之添加注意力机制_第2张图片

这是原始的head部分,需要修改成下面这样

YOLOv5改进之添加注意力机制_第3张图片

因为我们把SE注意力机制插在第八层之后,所以原先的14层就变成了15层,同样的,最后的输出也需要把层数加一。

添加这些注意力机制是yolov5最基础的改进,但是说实话,注意力机制可以添加在很多的地方,不一定会有效果,所以插在哪里效果最好就需要大家自行讨论了。 注意力机制也有很多种,se注意力机制应该是属于最基础的通道注意力了吧

你可能感兴趣的:(深度学习,人工智能)