一、前言
近期在实际项目中使用到了PID控制算法,于是就该算法做一总结。
二、PID控制算法详解
2.1 比例控制算法
例子: 假设一个水缸,需要最终控制水缸的水位永远维持在1米的高度。
水位目标:T 当前水位:Tn 加水量:U 误差:error error=T-Tn 比例控制系数:kp U = k_p * errorU=kp∗error initial: T=1; Tn=0.2, error=1-0.2=0.8; kp=0.4
2.1.1 比例控制python简单示意
T=1 Tn=0.2 error=1-0.2 kp=0.4 for t in range(1, 10): U = kp * error Tn += U error = T-Tn print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f}') """ t=1 | add 0.32000 => Tn=0.52000 error=0.48000 t=2 | add 0.19200 => Tn=0.71200 error=0.28800 t=3 | add 0.11520 => Tn=0.82720 error=0.17280 t=4 | add 0.06912 => Tn=0.89632 error=0.10368 t=5 | add 0.04147 => Tn=0.93779 error=0.06221 t=6 | add 0.02488 => Tn=0.96268 error=0.03732 t=7 | add 0.01493 => Tn=0.97761 error=0.02239 t=8 | add 0.00896 => Tn=0.98656 error=0.01344 t=9 | add 0.00537 => Tn=0.99194 error=0.00806 """
2.1.2 比例控制存在的一些问题
根据kp取值不同,系统最后都会达到1米,只不过kp大了达到的更快。不会有稳态误差。 若存在漏水情况,在相同情况下,经过多次加水后,水位会保持在0.75不在再变化,因为当U和漏水量一致的时候将保持不变——即稳态误差 U=k_p*error=0.1 => error = 0.1/0.4 = 0.25U=kp∗error=0.1=>error=0.1/0.4=0.25,所以误差永远保持在0.25
T=1 Tn=0.2 error=1-0.2 kp=0.4 extra_drop = 0.1 for t in range(1, 100): U = kp * error Tn += U - extra_drop error = T-Tn print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f}') """ t=95 | add 0.10000 => Tn=0.75000 error=0.25000 t=96 | add 0.10000 => Tn=0.75000 error=0.25000 t=97 | add 0.10000 => Tn=0.75000 error=0.25000 t=98 | add 0.10000 => Tn=0.75000 error=0.25000 t=99 | add 0.10000 => Tn=0.75000 error=0.25000 """
实际情况中,这种类似水缸漏水的情况往往更加常见
- 比如控制汽车运动,摩擦阻力就相当于是"漏水"
- 控制机械臂、无人机的飞行,各类阻力和消耗相当于"漏水"
所以单独的比例控制,很多时候并不能满足要求
2.2 积分控制算法(消除稳态误差)
比例+积分控制算法:
- 误差累计
- 积分控制系数
2.2.1 python简单实现
T=1 Tn=0.2 error=1-0.2 kp=0.4 extra_drop = 0.1 ki=0.2 sum_error = 0 for t in range(1, 20): sum_error += error U = kp * error + ki * sum_error Tn += U - extra_drop error = T-Tn print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f}') """ t=14 | add 0.10930 => Tn=0.97665 error=0.02335 t=15 | add 0.11025 => Tn=0.98690 error=0.01310 t=16 | add 0.10877 => Tn=0.99567 error=0.00433 t=17 | add 0.10613 => Tn=1.00180 error=-0.00180 t=18 | add 0.10332 => Tn=1.00512 error=-0.00512 t=19 | add 0.10097 => Tn=1.00608 error=-0.00608 """
2.3 微分控制算法(减少控制中的震荡)
在越靠近目标的时候则加的越少。
- kd: 微分控制系数
- d_error/d_t ~= error_t - error_t_1:误差的变化
3.3.1 加入微分控制算法的python简单示意
令:kd=0.2; d_error = 当前时刻误差-前时刻误差
T=1 Tn=0.2 error=1-0.2 kp=0.4 extra_drop = 0.1 ki=0.2 sum_error = 0 kd=0.2 d_error = 0 error_n = 0 error_b = 0 for t in range(1, 20): error_b = error_n error_n = error # print(error_b1, error_b2) d_error = error_n - error_b if t >= 2 else 0 sum_error += error U = kp * error + ki * sum_error + kd * d_error Tn += U - extra_drop error = T-Tn print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f} | d_error: {d_error:.5f}') """ t=14 | add 0.09690 => Tn=0.96053 error=0.03947 | d_error: 0.01319 t=15 | add 0.10402 => Tn=0.96455 error=0.03545 | d_error: 0.00310 t=16 | add 0.10808 => Tn=0.97263 error=0.02737 | d_error: -0.00402 t=17 | add 0.10951 => Tn=0.98214 error=0.01786 | d_error: -0.00808 t=18 | add 0.10899 => Tn=0.99113 error=0.00887 | d_error: -0.00951 t=19 | add 0.10727 => Tn=0.99840 error=0.00160 | d_error: -0.00899 """
2.4 PID算法总结
for kp_i in np.linspace(0, 1, 10): pid_plot(kp=kp_i, ki=0.2, kd=0.2)
for ki_i in np.linspace(0, 1, 10): pid_plot(kp=0.5, ki=ki_i, kd=0.2)
for kd_i in np.linspace(0, 1, 10): pid_plot(kp=0.5, ki=0.2, kd=kd_i)
pid_plot(kp=0.65, ki=0.05, kd=0.5, print_flag=True)
三、牛顿法调参
损失函数采用:RMSE
from scipy import optimize import matplotlib.pyplot as plt import numpy as np def pid_plot(args, plot_flag=True, print_flag=False): kp, ki, kd = args T=1 Tn=0.2 error=1-0.2 extra_drop = 0.1 sum_error = 0 d_error = 0 error_n = 0 error_b = 0 Tn_list = [] for t in range(1, 100): error_b = error_n error_n = error d_error = error_n - error_b if t >= 2 else 0 sum_error += error U = kp * error + ki * sum_error + kd * d_error Tn += U - extra_drop error = T-Tn Tn_list.append(Tn) if print_flag: print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f} | d_error: {d_error:.5f}') if plot_flag: plt.plot(Tn_list) plt.axhline(1, linestyle='--', color='darkred', alpha=0.8) plt.title(f'$K_p$={kp:.3f} $K_i$={ki:.3f} $K_d$={kd:.3f}') plt.ylim([0, max(Tn_list) + 0.2]) plt.show() loss = np.sqrt(np.mean(np.square(np.ones_like(Tn_list) - np.array(Tn_list)))) return loss boundaries=[(0, 2), (0, 2), (0, 2)] res = optimize.fmin_l_bfgs_b(pid_plot, np.array([0.1, 0.1, 0.1]), args=(False, False), bounds = boundaries, approx_grad = True) pid_plot(res[0].tolist(), print_flag=True) pid_plot([0.65, 0.05, 0.5], print_flag=True)
牛顿法调参结果图示 :
简单手动调参图示:
到此这篇关于PID原理与python的简单实现和调参的文章就介绍到这了,更多相关PID与python内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!