- C语言图像处理技术:从基础到高级应用
南城游子
本文还有配套的精品资源,点击获取简介:C语言在图像处理领域拥有丰富的应用,涉及计算机视觉和数字信号处理。本课程深入探讨C语言进行图像处理的各项核心技术,包括像素操作、色彩模型理解、滤波算法、色彩空间转换、边缘检测、以及图像变换等。通过详细解析,学习者将掌握如何使用C语言和OpenCV库来实现高效的图像处理,并能够解决实际问题。1.像素操作与图像基本组成数字图像处理是现代计算机视觉和图像理解的基础,
- OpenCV的卡尔曼滤波器:实现和应用
雪域Code
opencv人工智能计算机视觉C/C++
OpenCV的卡尔曼滤波器:实现和应用卡尔曼滤波器(Kalmanfilter)是一种最优估计的算法,在众多领域有着广泛的应用,如控制系统、通信系统、机器人等。OpenCV作为一个计算机视觉库,也提供了对卡尔曼滤波器的支持。本文将介绍OpenCV中卡尔曼滤波器的基本原理、实现方法以及在图像处理中的应用。一、卡尔曼滤波器简介卡尔曼滤波器是一种用于状态估计和信号滤波的算法,主要针对线性、高斯分布的系统。
- opencv 中值滤波
菩提本无树007
opencv计算机视觉人工智能
中值滤波是一种常用的图像滤波算法,是在像素点周围进行多个点的中值滤波,将点的灰度值根据其周围像素点的灰度值进行平均,并使这些点的灰度值具有相似性,以达到平滑去噪的目的。中值滤波在图像处理中应用广泛,在图像滤波和图像增强处理中得到了广泛应用。中值滤波的原理如下:(1)中值滤波是一种通过计算灰度图像各像素灰度值的均值来实现去噪的算法。它采用灰度均值来代替灰度方差,在保证灰度图像的基本信息不变的同时,滤
- 【基于PSINS】CKF滤波,观测量为航向角、位置、速度(共7维),附完整代码
MATLAB卡尔曼
基于PSINS工具箱的程序设计matlab开发语言
本代码基于PSINS工具箱实现了一个15维状态的容积卡尔曼滤波(CKF)算法,用于SINS/GPS组合导航系统。该算法在原有仅速度观测的CKF153模型基础上改进,新增位置、航向角作为观测输入,提升了导航精度。文章目录运行结果完整代码核心功能代码改进点实现流程关键函数说明运行结果总结以下是代码的核心功能与实现流程:运行结果三维轨迹:三轴位置误差曲线:三轴速度误差曲线:
- 低通滤波算法的数学原理和C语言实现
mftang
自动化控制与算法算法
目录概述1原理介绍1.1基本概念1.2一阶RC低通滤波器模型2C语言完整实现2.1滤波器结构体定义2.2初始化函数2.3滤波计算函数3应用示例3.1噪声信号滤波3.2输出效果对比3.3关键参数选择指南4性能优化技巧4.1定点数优化4.2抗溢出处理5多阶滤波器扩展概述低通滤波是一种信号处理算法,用于滤除高频成分,只保留低频成分。其原理是将输入信号通过一个滤波器,滤除高于某个截止频率的频率成分,只保留
- OpenCV4.8 开发实战系列专栏之 27 - 边缘保留滤波算法-均值迁移模糊(mean-shift blur)
gloomyfish
OpenCV4.8从入门到工程实战算法均值算法opencv图像处理计算机视觉深度学习人工智能
欢迎大家学习OpenCV4.8开发实战专栏,长期更新,不断分享源码。专栏代码全部基于C++与Python双语演示。进贾老师OpenCV学堂交流群,+V:OpenCVXueTang_Asst本文关键知识点:边缘保留滤波算法-均值迁移模糊(mean-shiftblur)均值迁移模糊是图像边缘保留滤波算法中一种,经常用来在对图像进行分水岭分割之前去噪声,可以大幅度提升分水岭分割的效果。均值迁移模糊的主要
- 组合导航中Kalman滤波算法相关知识简述
十八与她
捷联惯导算法与组合导航原理算法机器学习人工智能组合导航惯导
组合导航中Kalman滤波算法相关知识简述温馨提示:阅读本篇博文内容,需要读者具备一定的Kalman滤波基础知识上图即为Kalman滤波算法的框架,分为预测(时间更新)和更新(量测更新)两部分,其参数估计的过程就是两者循环迭代的过程。预报,就是根据系统状态方程,从前一时刻状态预测当前时刻的状态的过程,可理解成对系统的先验知识的一种推算。预报中,状态估计和它的方差协方差阵也要给出,从方差协方差阵P的
- PSINS中19维组合导航模块sinsgps详解(滤波部分)
十八与她
PSINS工具箱基本原理与应用人工智能大数据算法惯导组合导航
PSINS中19维组合导航模块sinsgps详解滤波部分滤波部分fork=1:nn:len-nn+1k1=k+nn-1;wvm=imu(k:k1,1:6);t=imu(k1,end);ins=insupdate(ins,wvm);上述代码先进行的是惯导算法更新2.kf.Phikk_1=kffk(ins);为创建卡尔曼滤波的状态转移矩阵3.kf=kfupdate(kf);卡尔曼滤波的时间更新4.[k
- 卡尔曼滤波记录
qq_30362711
优化与求解机器学习
参考这个:https://www.kalmanfilter.net/alphabeta.html。这个吊打其他一切教程
- 【IMU Kalman滤波器】9轴IMU传感器(加速度计、陀螺仪、磁力计)的卡尔曼滤波器算法研究(Matlab代码实现)
然哥爱编程
算法matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、引言二、9轴IMU传感器原理及误差分析三、卡尔曼滤波器算法四、实验与结果分析五、结论与展望2运行结果3参考文献4Matlab代码、数据⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努
- C# OpenCV机器视觉:卡尔曼滤波
pchmi
C#OpenCV机器视觉c#opencv人工智能机器视觉卡尔曼滤波
在一个阳光有些慵懒的午后,阿强像往常一样窝在他那被各种电子元件和乱糟糟电线堆满的实验室里,百无聊赖地翻看着一本本厚重的技术书籍。突然,一阵急促的敲门声打破了平静,阿强趿拉着拖鞋,嘟囔着跑去开门,只见好友二胖火急火燎地冲了进来,手里还挥舞着一个小型无人机模型。“阿强啊,我这新买的无人机出大问题了!”二胖气喘吁吁地说道,额头上豆大的汗珠滚落,“我本来想在公园里拍点酷炫的飞行视频,结果它在空中晃得厉害,
- 基于卡尔曼滤波的系统参数辨识matlab仿真
软件算法开发
MATLAB程序开发#参数辨识matlab网络
目录1.程序功能描述2.测试软件版本以及运行结果展示3.核心程序4.本算法原理4.1、卡尔曼滤波的基本原理4.2、基于卡尔曼滤波的系统参数辨识5.完整程序1.程序功能描述通过kalman滤波的方法,对系统的参数进行辨识,整个程序仿真输出参数辨识的收敛过程,参数辨识误差,参数辨识之后系统的输出和真实的系统输出误差,最后设置不同的信噪比,对比不同干扰下的系统参数辨识误差。2.测试软件版本以及运行结果展
- 目标跟踪概念、多目标跟踪算法SORT和deep SORT原理
yhwang-hub
深度学习
目录目标跟踪、单目标跟踪、多目标跟踪的概念欧氏距离、马氏距离、余弦距离欧氏距离马氏距离余弦距离SORT算法原理SORT算法中的匈牙利匹配算法指派问题中的匈牙利算法预测模型(卡尔曼滤波器)数据关联(匈牙利匹配)目标丢失问题的处理SORT算法过程deepSORT算法原理状态估计轨迹处理分配问题的评价指标级联匹配深度表观描述子算法总结目标跟踪、单目标跟踪、多目标跟踪的概念目标跟踪分为静态背景下的目标跟踪
- 传感器融合(UWB+IMU+超声波),使用卡尔曼滤波器和3种不同的多点定位算法(最小二乘、递归最小二乘和梯度下降)研究(Matlab代码实现)
科研_研学社
算法matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、引言二、传感器介绍(一)UWB(超宽带)(二)IMU(惯性测量单元)(三)超声波传感器三、定位算法(一)卡尔曼滤波器(二)多点定位算法1.最小二乘法2.递归最小二乘法3.梯度下降法四、系统架构五、实验设计六、结果与讨论七、结论2运行结果3参考文献
- 【事件触发扩散卡尔曼滤波器】基于UWB实测数据的基于事件触发的扩散卡尔曼滤波器的定位【DEKF、EKF】(Matlab代码实现)
wlz249
matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述2运行结果3参考文献4Matlab代码、数据、文章下载⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌
- 维度可变的UKF(无迹卡尔曼滤波),附有完整源代码
MATLAB卡尔曼
MATLAB创新性滤波方法matlab开发语言
本文分享的MATLAB代码实现了一个N维状态量的无迹卡尔曼滤波(UKF)算法,用于对动态系统的状态估计。代码的一个显著特点是滤波维度可以自由更改,便于适应不同的应用需求。文章目录代码简短介绍运行结果源代码代码简短介绍主要内容和流程如下:初始化:清空工作区和命令窗口,固定随机数种子以确保结果可重现。定义时间序列和状态维度(dim),可以灵活设置至任意值,以适应特定应用。设置过程和观测噪声的协方差矩阵
- 用python编写的UKF(无迹卡尔曼滤波)代码,状态量和观测量都是三维、非线性的,注释使用中文
MATLAB卡尔曼
卡尔曼与pythonpython开发语言
用python编写的UKF(无迹卡尔曼滤波)代码,状态量和观测量都是三维、非线性的,注释使用中文文章目录代码讲解UKF类的构造预测步骤更新步骤辅助函数示例用法总结importnumpyasnpclassUKF:def__init__(self,dim_x,dim_z,alpha=1e-3,beta=2,kappa=0):self.dim_x=dim_x#状态维度self.dim_z=dim_z#观
- Open3D 实现CSF布料模拟算法
今夕是何年,
单目+双目Open3d计算机视觉
目录一、算法原理二,详细过程三,环境安装四,代码实现五,结果展示6,在cloudcompare中的实现一、算法原理1、流程概述1)利用点云·滤波算法或者点云处理软件滤除异常点;2)将激光雷达点云倒置;3)设置模拟布料,设置布料网格分辨率GR,确定模拟粒子数。布料的位置设置在点云最高点以上;4)将布料模拟点和雷达点投影到水平面,为每个布料模拟点找到最相邻的激光点的高度值,将高度值设置为IHV;5)布
- fpga图像处理实战-中值滤波
梦梦梦梦子~
OV5640+图像处理图像处理fpga开发计算机视觉
中值滤波中值滤波算法是一种常用的非线性数字滤波技术,主要用于信号处理和图像处理领域。其核心思想是使用信号或图像中某个窗口内所有数值的中值来替换该窗口中心的值,从而达到消除噪声、保留边缘细节的目的。原理简介中值滤波的基本原理是将每个像素点的值用其邻域内的中值来代替,这样可以将孤立的噪声点替换为更接近真实值的周围像素值,从而达到平滑图像的目的。FPGA实现`timescale1ns/1ps////Co
- SAR图像相干斑滤波算法
fpga和matlab
MATLAB板块2:图像-特征提取处理SAR相干斑滤波
目前已有大量的雷达相干斑抑制算法,这些算法可分为成像前的多视平滑预处理和成像后的滤波两大类。而成像后的滤波又包括空域滤波和频域滤波两种。为了减少相干斑噪声,早期的方法是在SAR成像处理中,通过降低处理器带宽形成多视图子图像,然后对多视子图像进行非相干叠加来降低相干斑噪声。这种非相干叠加来降低斑点噪声的方法称为多视处理。多视处理通过牺牲SAR图像的空间分辨率为代价来对相干斑进行抑制,已不能满足空间高
- 【概率图与随机过程】01 一维高斯分布:极大似然与无偏性
石 溪
机器学习中的数学(全集)概率论图论自然语言处理机器学习人工智能
在这个专栏中,我们开篇首先介绍高斯分布,他的重要性体现在两点:第一:依据中心极限定理,当样本量足够大的时候,任意分布的均值都趋近于一个高斯分布,这是在整个工程领域体现出该分布的一种普适性;第二:高斯分布是后续许多模型的根本基础,例如线性高斯模型(卡尔曼滤波)、高斯过程等等。因此我们首先在这一讲当中,结合一元高斯分布,来讨论一下极大似然估计,估计的有偏性、无偏性等基本建模问题。1.极大似然估计问题背
- 基于协同滤波推荐算法的图书管理系统
Sweican
毕业设计mybatisjava开发语言
目录一、项目概述二、技术框架三、功能设计四、数据库设计五、项目截图六、技术文档一、项目概述Hi,大家好,今天分享的项目是《基于协同滤波推荐算法的图书管理系统》,对用户登录注册、图书推荐、图书管理、用户信息进行管理,基于用户的协同滤波算法对用户进行图书推荐、根据图书浏览量对用户进行热门图书推荐等。图书管理一方面实现对图书信息的维护,如新增、查看、编辑图书等。另一方面实现对图书借阅进行管理,如图书借出
- EKF+PF的MATLAB例程
Evand J
matlab开发语言
EKF+PF扩展卡尔曼滤波与粒子滤波的MATLAB程序,有中文注释程序源码%EKF+PF效果对比%author:Evand%作者联系方式:
[email protected](除前期达成一致外,咨询需付费)%date:2024-1-10%Ver2clear;clc;closeall;rng(0);%%参数设置N=100;%粒子总数
- 基于二阶卡尔曼滤波的陀螺仪及加速度计信号融合的姿态角度测量
星e雨
嵌入式
★基于陀螺仪及加速度计信号融合的姿态角度测量1、系统组成本文所采用的姿态角度测控系统主要由加速度计、陀螺仪、微控制器、滤波电路、电机调速器、无刷电机等部分组成.姿态检测系统的硬件平台如图1,由微处理器对陀螺仪、滤波电路和加速度计构成的传感器组进行高速A/D采样后,通过卡尔曼滤波器对传感器数据进行补偿和信息融合,得到准确的姿态角度信号,此角度信号再通过PID控制器运算,输出给电子调速器转换成PWM信
- WebRTC 中带宽估计与拥塞控制算法
逆风了我
WebRTCwebrtc
WebRTC中的带宽估计与拥塞控制算法有很多,以下是其中几种:-GCC(GoogleCongestionControl):基于丢包的带宽估计,其基本思想是根据丢包的多少来判断网络的拥塞程度。丢包越多则认为网络越拥塞,发送速率就需要降低;如果没有丢包,则说明网络状况较好,可以提高发送码率以探测是否有更多的带宽可用。-Goog-REMB:基于接收端的延迟算法,利用延迟值,通过卡尔曼滤波器估计出下一时刻
- 扩展卡尔曼滤波与粒子滤波例程
Evand J
算法人工智能
三维滤波,非线性系统状态与非线性观测,使用EKF和PF进行滤波,输出滤波值曲线与误差对比,MATLAB程序如下:%EKF+PF效果对比%author:Evand%作者联系方式:
[email protected](除前期达成一致外,咨询需付费)%date:2024-1-10%Ver2clear;clc;closeall;%%参数设置N=100;%粒子总数t=1:1:
- 卡尔曼滤波详解(1)
见牛羊
人工智能人工智能数学建模
目录1.核心思想2.五个公式的解读2.1预测部分2.2更新部分3.公式的实际应用4.调参方法1.核心思想首先,卡尔曼滤波器可以用来估计系统的状态,这个状态是时间序列上的,利用上一时刻的状态可以预测当前时刻的状态,利用当前时刻的观测可以更新和修正当前时刻的预测。这么说可能有点绕,看下图。绿色的x表示系统的状态,y表示对系统状态的观测,蓝色的x表示修正后的状态。卡尔曼滤波的核心思想,就是用利用蓝色进行
- EKF与UKF对比,三维状态量滤波
Evand J
人工智能matlab
扩展卡尔曼滤波EKF与无迹卡尔曼滤波UKF的MATLAB程序,程序源码:%EKF+UKF效果对比%author:Evand%作者联系方式:
[email protected](除前期达成一致外,付费咨询)%date:2023-11-07%Ver1clear;clc;closeall;%%滤波模型初始化t=1:1:1000;Q=1*
- 【嵌入式开发】80
少年郎123456
单片机嵌入式硬件stm32fpga开发
【嵌入式开发】STM32在四轴无人机开发中实现飞行控制主要通过以下步骤:读取传感器数据:STM32通过I2C、SPI等接口与各种传感器进行通信,如陀螺仪、加速度计、磁力计等。它定时读取这些传感器的原始数据,这些数据反映了无人机的姿态、位置和速度等信息。数据处理与姿态解算:读取到的原始数据通常包含噪声和误差,需要进行滤波和处理。STM32运行相应的算法对这些数据进行处理,如卡尔曼滤波、互补滤波等,以
- 无人机飞控算法原理基础研究,多旋翼无人机的飞行控制算法理论详解,无人机飞控软件架构设计
创小董
无人机技术无人机算法
多旋翼无人机的飞行控制算法主要涉及到自动控制器、捷联式惯性导航系统、卡尔曼滤波算法和飞行控制PID算法等部分。自动控制器是无人机飞行控制的核心部分,它负责接收来自无人机传感器和其他系统的信息,并根据预设的算法和逻辑,对无人机的姿态、速度、位置等进行控制。控制器通过控制无人机的电机,使无人机能够按照期望的姿态、速度和位置进行飞行。捷联式惯性导航系统则是一种自主式的导航方法,利用载体上的加速度计、陀螺
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息