图像处理基本思想和算法研究

刚开始想把这部分内容命名为“基本算法”,意在介绍图像处理中的一些基本算法,后来仔细想想决定不这么写,因为图像处理是一个非常大的概念,图像处理不等于人脸识别,也不等于模式识别,直接介绍诸如图像处理基本算法之类的内容很容易写成空话,没有什么实际意义。读者有兴趣的话可以直接谷歌百度“图像处理十大经典算法”,上面有我想说的内容。

万变不离其宗,算法是死的,重在思想。举个例子,我个人是主攻模式识别方向,在这个方向判断一个学生是否入门有一个非常简单的方法,就是“如果你能把图像很自然的想象成高维空间中的一个点”,那就说明在模式识别方面入门了,可以对图像进行分类了。

当然标准不是唯一,在其他领域如目标检测也会有其他的判断标准,总之我们要对图像进行处理,那么图像就不再只是图像,它可能会演变成各种不同形式的概念,可能是点,可能是面,还可能是一个坐标空间。在目标跟踪的经典算法粒子滤波中,将一个个的小图像块看做一个个粒子;在子空间理论中,将一系列图像放在一起构建一个成分主空间(例如主成分分析PCA算法等等。,我不会详细介绍这些算法,说多了就显得抽象老套,但我要说的是我们一定要把图像本身理解好,它是一个图像,是一个矩阵,是一个信息的容器,是一种数据的表现形式,图像不一定都必须在视觉上有意义(比如频域的图像)。

总之图像处理的基本思想还是要立足于图像本身,要深度到图像内部结构中,思维要灵活。我当时做本科毕设时,怎么也不知道图像和高维空间中的点之间有什么对应关系,后来总算有一天,突然就明白了,这也就是所谓的量变产生质变。总之一定要多想,多总结,主动去钻研,才能够真正领悟一些东西。最基本的东西往往蕴藏着深奥的道理,无论你现在多牛多厉害,都不能放掉最本源的东西。多想想图像是什么,有什么本质属性,你可能无法得到准确的答案,但肯定能得到一些有用的感悟(有点像哲学问题了)。


算法研究
算法研究应该是图像处理的核心工作,尤其是各大高校的博士硕士。这里我并不想谈那些高大上的算法,我更想说的是一些算法研究的一些基础的东西,比如说一些基础课程,比如说矩阵运算。

研究图像处理的算法,离不开数学。在这里我建议图像处理方面的硕士一定要上两门课:《泛函分析》以及《最优化算法》,有的学校已经将这两门课列为了研究生阶段的必修课程。这两门可可以说是图像处理(至少是模式识别)的基础。我当初没上过最优化算法,但后来也自己补上了,不然真的是寸步难行。至于泛函我当时听课的时候也不是很懂,但是在之后的研究过程中发现很多图像处理的基本知识基本理论都和泛函分析中枯燥的定理如出一辙,没办法,有的东西本身就是枯燥的干货,学着费力,缺它不行。

  其次我想说的是矩阵运算。图像就是矩阵,图像处理就是矩阵运算。大家为什么都喜欢用Matlab,就是因为它的矩阵运算能力实在是太强大,在Matlab的世界中任何变量都是矩阵。同样OpenCv之所以能流行,不仅仅是因为它良好的封装性,也是因为它的矩阵格式,它定义了Mat基础类,允许你对矩阵进行各种操作。Python也不例外,它的Numpy就是一个专门的线性代数库。

  真正在图像编程过程中,那些看着高大上的API函数归根到底都是工具,查查手册就能找到,真正核心还是在算法,算法是由公式编写的,公式的单元是变量,而图像届的变量就是矩阵。所以,熟练去操作矩阵,求秩、求逆、最小二乘,求协方差,都是家常便饭。所以,如果你有幸能上《矩阵分析》这门课,一定要把它看懂,那里面都是干货。

你可能感兴趣的:(图像处理,图像处理,算法)