激活函数总结RELU,Leaky RELU

ReLU
修正线性单元(Rectified linear unit,ReLU)是神经网络中最常用的激活函数。

ReLu激活函数的优点是:

1,相比Sigmoid/tanh函数,使用梯度下降(GD)法时,收敛速度更快

2,相比Sigmoid/tanh函数,Relu只需要一个门限值,即可以得到激活值,计算速度更快

缺点是:

Relu的输入值为负的时候,输出始终为0,其一阶导数也始终为0,这样会导致神经元不能更新参数,也就是神经元不学习了,这种现象叫做“Dead Neuron”。

 

Leaky ReLUs
    ReLU是将所有的负值都设为零,相反,Leaky ReLU是给所有负值赋予一个非零斜率。Leaky ReLU激活函数是在声学模型(2013)中首次提出的。以数学的方式我们可以表示为:

    激活函数总结RELU,Leaky RELU_第1张图片ai是(1,+∞)区间内的固定参数。

 

随机纠正线性单元(RReLU)
    “随机纠正线性单元”RReLU也是Leaky ReLU的一个变体。在RReLU中,负值的斜率在训练中是随机的,在之后的测试中就变成了固定的了。RReLU的亮点在于,在训练环节中,aji是从一个均匀的分布U(I,u)中随机抽取的数值。形式上来说,我们能得到以下结果:

    激活函数总结RELU,Leaky RELU_第2张图片

激活函数总结RELU,Leaky RELU_第3张图片

你可能感兴趣的:(深度学习)