#1 引言# 本文主要讲解JDBC怎么演变到Mybatis的渐变过程,重点讲解了为什么要将JDBC封装成Mybaits这样一个持久层框架。再而论述Mybatis作为一个数据持久层框架本身有待改进之处。
#2 JDBC实现查询分析# 我们先看看我们最熟悉也是最基础的通过JDBC查询数据库数据,一般需要以下七个步骤:
加载JDBC驱动;
建立并获取数据库连接;
创建 JDBC Statements 对象;
设置SQL语句的传入参数;
执行SQL语句并获得查询结果;
对查询结果进行转换处理并将处理结果返回;
释放相关资源(关闭Connection,关闭Statement,关闭ResultSet);
以下是具体的实现代码:
public static List
#3 JDBC演变到Mybatis过程# 上面我们看到了实现JDBC有七个步骤,哪些步骤是可以进一步封装的,减少我们开发的代码量。
##3.1 第一步优化:连接获取和释放##
数据库连接频繁的开启和关闭本身就造成了资源的浪费,影响系统的性能
。
解决问题:
数据库连接的获取和关闭我们可以使用数据库连接池来解决资源浪费的问题
。通过连接池就可以反复利用已经建立的连接去访问数据库了。减少连接的开启和关闭的时间。
但是现在连接池多种多样,可能存在变化
,有可能采用DBCP的连接池,也有可能采用容器本身的JNDI数据库连接池。
解决问题:
我们可以通过DataSource进行隔离解耦
,我们统一从DataSource里面获取数据库连接,DataSource具体由DBCP实现还是由容器的JNDI实现都可以
,所以我们将DataSource的具体实现通过让用户配置来应对变化。
##3.2 第二步优化:SQL统一存取##
我们使用JDBC进行操作数据库时,SQL语句基本都散落在各个JAVA类中
,这样有三个不足之处:
第一,可读性很差,不利于维护以及做性能调优。
第二,改动Java代码需要重新编译、打包部署。
第三,不利于取出SQL在数据库客户端执行(取出后还得删掉中间的Java代码,编写好的SQL语句写好后还得通过+号在Java进行拼凑)。
解决问题:
我们可以考虑不把SQL语句写到Java代码中,那么把SQL语句放到哪里呢?首先需要有一个统一存放的地方,我们可以将这些SQL语句统一集中放到配置文件或者数据库里面(以key-value的格式存放)
。然后通过SQL语句的key值去获取对应的SQL语句。
既然我们将SQL语句都统一放在配置文件或者数据库中,那么这里就涉及一个SQL语句的加载问题
。
##3.3 第三步优化:传入参数映射和动态SQL##
很多情况下,我们都可以通过在SQL语句中设置占位符来达到使用传入参数的目的,这种方式本身就有一定局限性,它是按照一定顺序传入参数的,要与占位符一一匹配。但是,如果我们传入的参数是不确定的
(比如列表查询,根据用户填写的查询条件不同,传入查询的参数也是不同的,有时是一个参数、有时可能是三个参数),那么我们就得在后台代码中自己根据请求的传入参数去拼凑相应的SQL语句
,这样的话还是避免不了在Java代码里面写SQL语句的命运
。既然我们已经把SQL语句统一存放在配置文件或者数据库中了,怎么做到能够根据前台传入参数的不同,动态生成对应的SQL语句呢
?
解决问题:
第一,我们先解决这个动态问题,按照我们正常的程序员思维是,通过if和else这类的判断来进行是最直观的
,这个时候我们想到了JSTL中的
假如前面可以判断没有问题,那么假如判断的结果是true,那么就需要输出的标签里面的SQL片段,但是怎么解决在标签里面使用变量名称的问题呢?这里我们需要使用一种有别于SQL的语法来嵌入变量(比如使用#变量名#)
。这样,SQL语句经过解析后就可以动态的生成符合上下文的SQL语句。
还有,怎么区分开占位符变量和非占位变量?有时候我们单单使用占位符是满足不了的,占位符只能为查询条件占位,SQL语句其他地方使用不了。这里我们可以使用#变量名#表示占位符变量,使用$变量名$表示非占位符变量
。
##3.4 第四步优化:结果映射和结果缓存##
执行SQL语句、获取执行结果、对执行结果进行转换处理、释放相关资源是一整套下来的。假如是执行查询语句,那么执行SQL语句后,返回的是一个ResultSet结果集,这个时候我们就需要将ResultSet对象的数据取出来,不然等到释放资源时就取不到这些结果信息了
。我们从前面的优化来看,以及将获取连接、设置传入参数、执行SQL语句、释放资源这些都封装起来了,只剩下结果处理这块还没有进行封装,如果能封装起来,每个数据库操作都不用自己写那么一大堆Java代码,直接调用一个封装的方法就可以搞定了。
解决问题:
我们分析一下,一般对执行结果的有哪些处理,有可能将结果不做任何处理就直接返回,也有可能将结果转换成一个JavaBean对象返回、一个Map返回、一个List返回等等
,结果处理可能是多种多样的。从这里看,我们必须告诉SQL处理器两点:第一,需要返回什么类型的对象;第二,需要返回的对象的数据结构怎么跟执行的结果映射
,这样才能将具体的值copy到对应的数据结构上。
接下来,我们可以进而考虑对SQL执行结果的缓存来提升性能
。缓存数据都是key-value的格式,那么这个key怎么来呢
?怎么保证唯一呢?即使同一条SQL语句几次访问的过程中由于传入参数的不同,得到的执行SQL语句也是不同的。那么缓存起来的时候是多对。但是SQL语句和传入参数两部分合起来可以作为数据缓存的key值
。
##3.5 第五步优化:解决重复SQL语句问题##
由于我们将所有SQL语句都放到配置文件中,这个时候会遇到一个SQL重复的问题
,几个功能的SQL语句其实都差不多,有些可能是SELECT后面那段不同、有些可能是WHERE语句不同。有时候表结构改了,那么我们就需要改多个地方,不利于维护。
解决问题:
当我们的代码程序出现重复代码时怎么办?将重复的代码抽离出来成为独立的一个类,然后在各个需要使用的地方进行引用
。对于SQL重复的问题,我们也可以采用这种方式,通过将SQL片段模块化,将重复的SQL片段独立成一个SQL块,然后在各个SQL语句引用重复的SQL块
,这样需要修改时只需要修改一处即可。
#4 Mybaits有待改进之处#
Mybaits所有的数据库操作都是基于SQL语句,导致什么样的数据库操作都要写SQL语句
。一个应用系统要写的SQL语句实在太多了。
改进方法:
我们对数据库进行的操作大部分都是对表数据的增删改查,很多都是对单表的数据进行操作,由这点我们可以想到一个问题:单表操作可不可以不写SQL语句,通过JavaBean的默认映射器生成对应的SQL语句
,比如:一个类UserInfo对应于USER_INFO表, userId属性对应于USER_ID字段。这样我们就可以通过反射可以获取到对应的表结构了,拼凑成对应的SQL语句显然不是问题
。
##5.1 接口层-和数据库交互的方式# MyBatis和数据库的交互有两种方式:
使用传统的MyBatis提供的API;
使用Mapper接口;
###5.1.1 使用传统的MyBatis提供的API### 这是传统的传递Statement Id 和查询参数给 SqlSession 对象,使用 SqlSession对象完成和数据库的交互
;MyBatis 提供了非常方便和简单的API,供用户实现对数据库的增删改查数据操作,以及对数据库连接信息和MyBatis 自身配置信息的维护操作。
上述使用MyBatis 的方法,是创建一个和数据库打交道的SqlSession对象,然后根据Statement Id 和参数来操作数据库
,这种方式固然很简单和实用,但是它不符合面向对象语言的概念和面向接口编程的编程习惯
。由于面向接口的编程是面向对象的大趋势,MyBatis 为了适应这一趋势,增加了第二种使用MyBatis 支持接口(Interface)调用方式。
###5.1.2 使用Mapper接口### MyBatis 将配置文件中的每一个
,而这个接口中声明的方法和跟
,即
根据MyBatis 的配置规范配置好后,通过SqlSession.getMapper(XXXMapper.class)
方法,MyBatis 会根据相应的接口声明的方法信息,通过动态代理机制生成一个Mapper 实例
,我们使用Mapper 接口的某一个方法时,MyBatis 会根据这个方法的方法名和参数类型,确定Statement Id,底层还是通过SqlSession.select("statementId",parameterObject);或者SqlSession.update("statementId",parameterObject); 等等来实现对数据库的操作, MyBatis 引用Mapper 接口这种调用方式,纯粹是为了满足面向接口编程的需要。(其实还有一个原因是在于,面向接口的编程,使得用户在接口上可以使用注解来配置SQL语句,这样就可以脱离XML配置文件,实现“0配置”)。
##5.2 数据处理层## 数据处理层可以说是MyBatis 的核心,从大的方面上讲,它要完成两个功能:
通过传入参数构建动态SQL语句;
SQL语句的执行以及封装查询结果集成List
###5.2.1 参数映射和动态SQL语句生成### 动态语句生成可以说是MyBatis框架非常优雅的一个设计,MyBatis 通过传入的参数值,使用 Ognl 来动态地构造SQL语句
,使得MyBatis 有很强的灵活性和扩展性。
参数映射指的是对于java 数据类型和jdbc数据类型之间的转换
:这里有包括两个过程:查询阶段,我们要将java类型的数据,转换成jdbc类型的数据,通过 preparedStatement.setXXX() 来设值
;另一个就是对resultset查询结果集的jdbcType 数据转换成java 数据类型
。
###5.2.2 SQL语句的执行以及封装查询结果集成List
动态SQL语句生成之后,MyBatis 将执行SQL语句,并将可能返回的结果集转换成ListMyBatis 在对结果集的处理中,支持结果集关系一对多和多对一的转换
,并且有两种支持方式,一种为嵌套查询语句的查询,还有一种是嵌套结果集的查询
。
##5.3 框架支撑层##
事务管理机制对于ORM框架而言是不可缺少的一部分
,事务管理机制的质量也是考量一个ORM框架是否优秀的一个标准。
由于创建一个数据库连接所占用的资源比较大, 对于数据吞吐量大和访问量非常大的应用而言
,连接池的设计就显得非常重要。
为了提高数据利用率和减小服务器和数据库的压力,MyBatis 会对于一些查询提供会话级别的数据缓存
,会将对某一次查询,放置到SqlSession 中,在允许的时间间隔内,对于完全相同的查询,MyBatis 会直接将缓存结果返回给用户,而不用再到数据库中查找。
传统的MyBatis 配置SQL 语句方式就是使用XML文件进行配置的,但是这种方式不能很好地支持面向接口编程的理念,为了支持面向接口的编程,MyBatis 引入了Mapper接口的概念,面向接口的引入,对使用注解来配置SQL 语句成为可能,用户只需要在接口上添加必要的注解即可,不用再去配置XML文件了
,但是,目前的MyBatis 只是对注解配置SQL 语句提供了有限的支持,某些高级功能还是要依赖XML配置文件配置SQL 语句。
##5.4 引导层## 引导层是配置和启动MyBatis配置信息的方式
。MyBatis 提供两种方式来引导MyBatis :基于XML配置文件的方式和基于Java API 的方式
。
##5.5 主要构件及其相互关系## 从MyBatis代码实现的角度来看,MyBatis的主要的核心部件有以下几个:
SqlSession 作为MyBatis工作的主要顶层API,表示和数据库交互的会话,完成必要数据库增删改查功能
Executor MyBatis执行器,是MyBatis 调度的核心,负责SQL语句的生成和查询缓存的维护
StatementHandler 封装了JDBC Statement操作,负责对JDBC statement 的操作,如设置参数、将Statement结果集转换成List集合。
ParameterHandler 负责对用户传递的参数转换成JDBC Statement 所需要的参数,
ResultSetHandler 负责将JDBC返回的ResultSet结果集对象转换成List类型的集合;
TypeHandler 负责java数据类型和jdbc数据类型之间的映射和转换
MappedStatement MappedStatement维护了一条
SqlSource 负责根据用户传递的parameterObject,动态地生成SQL语句,将信息封装到BoundSql对象中,并返回
BoundSql 表示动态生成的SQL语句以及相应的参数信息
Configuration MyBatis所有的配置信息都维持在Configuration对象之中。
它们的关系如下图所示:
#6 SqlSession工作过程分析#
SqlSession sqlSession = factory.openSession();
MyBatis封装了对数据库的访问,把对数据库的会话和事务控制放到了SqlSession对象中。
List result = sqlSession.selectList("com.louis.mybatis.dao.EmployeesMapper.selectByMinSalary",params);
上述的"com.louis.mybatis.dao.EmployeesMapper.selectByMinSalary",是配置在EmployeesMapper.xml 的Statement ID,params 是传递的查询参数。
让我们来看一下sqlSession.selectList()方法的定义:
public List selectList(String statement, Object parameter) {
return this.selectList(statement, parameter, RowBounds.DEFAULT);
}
public List selectList(String statement, Object parameter, RowBounds rowBounds) {
try {
//1.根据Statement Id,在mybatis 配置对象Configuration中查找和配置文件相对应的MappedStatement
MappedStatement ms = configuration.getMappedStatement(statement);
//2. 将查询任务委托给MyBatis 的执行器 Executor
List result = executor.query(ms, wrapCollection(parameter), rowBounds, Executor.NO_RESULT_HANDLER);
return result;
} catch (Exception e) {
throw ExceptionFactory.wrapException("Error querying database. Cause: " + e, e);
} finally {
ErrorContext.instance().reset();
}
}
MyBatis在初始化的时候,会将MyBatis的配置信息全部加载到内存中,使用org.apache.ibatis.session.Configuration实例来维护
。使用者可以使用sqlSession.getConfiguration()方法来获取。MyBatis的配置文件中配置信息的组织格式和内存中对象的组织格式几乎完全对应的
。上述例子中的
加载到内存中会生成一个对应的MappedStatement对象,然后会以key="com.louis.mybatis.dao.EmployeesMapper.selectByMinSalary" ,value为MappedStatement对象的形式维护到Configuration的一个Map中
。当以后需要使用的时候,只需要通过Id值来获取就可以了。
从上述的代码中我们可以看到SqlSession的职能是:SqlSession根据Statement ID, 在mybatis配置对象Configuration中获取到对应的MappedStatement对象,然后调用mybatis执行器来执行具体的操作
。
/**
* BaseExecutor 类部分代码
*
*/
public List query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler) throws SQLException {
// 1. 根据具体传入的参数,动态地生成需要执行的SQL语句,用BoundSql对象表示
BoundSql boundSql = ms.getBoundSql(parameter);
// 2. 为当前的查询创建一个缓存Key
CacheKey key = createCacheKey(ms, parameter, rowBounds, boundSql);
return query(ms, parameter, rowBounds, resultHandler, key, boundSql);
}
@SuppressWarnings("unchecked")
public List query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {
ErrorContext.instance().resource(ms.getResource()).activity("executing a query").object(ms.getId());
if (closed) throw new ExecutorException("Executor was closed.");
if (queryStack == 0 && ms.isFlushCacheRequired()) {
clearLocalCache();
}
List list;
try {
queryStack++;
list = resultHandler == null ? (List) localCache.getObject(key) : null;
if (list != null) {
handleLocallyCachedOutputParameters(ms, key, parameter, boundSql);
} else {
// 3.缓存中没有值,直接从数据库中读取数据
list = queryFromDatabase(ms, parameter, rowBounds, resultHandler, key, boundSql);
}
} finally {
queryStack--;
}
if (queryStack == 0) {
for (DeferredLoad deferredLoad : deferredLoads) {
deferredLoad.load();
}
deferredLoads.clear(); // issue #601
if (configuration.getLocalCacheScope() == LocalCacheScope.STATEMENT) {
clearLocalCache(); // issue #482
}
}
return list;
}
private List queryFromDatabase(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {
List list;
localCache.putObject(key, EXECUTION_PLACEHOLDER);
try {
//4. 执行查询,返回List 结果,然后 将查询的结果放入缓存之中
list = doQuery(ms, parameter, rowBounds, resultHandler, boundSql);
} finally {
localCache.removeObject(key);
}
localCache.putObject(key, list);
if (ms.getStatementType() == StatementType.CALLABLE) {
localOutputParameterCache.putObject(key, parameter);
}
return list;
}
/**
*
*SimpleExecutor类的doQuery()方法实现
*
*/
public List doQuery(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, BoundSql boundSql) throws SQLException {
Statement stmt = null;
try {
Configuration configuration = ms.getConfiguration();
//5. 根据既有的参数,创建StatementHandler对象来执行查询操作
StatementHandler handler = configuration.newStatementHandler(wrapper, ms, parameter, rowBounds, resultHandler, boundSql);
//6. 创建java.Sql.Statement对象,传递给StatementHandler对象
stmt = prepareStatement(handler, ms.getStatementLog());
//7. 调用StatementHandler.query()方法,返回List结果集
return handler.query(stmt, resultHandler);
} finally {
closeStatement(stmt);
}
}
上述的Executor.query()方法几经转折,最后会创建一个StatementHandler对象,然后将必要的参数传递给StatementHandler
,使用StatementHandler来完成对数据库的查询,最终返回List结果集。
从上面的代码中我们可以看出,Executor的功能和作用是:
根据传递的参数,完成SQL语句的动态解析,生成BoundSql对象,供StatementHandler使用;
为查询创建缓存,以提高性能;
创建JDBC的Statement连接对象,传递给StatementHandler对象,返回List查询结果;
接着上面的Executor第六步,看一下:prepareStatement() 方法的实现:
/**
*
*SimpleExecutor类的doQuery()方法实现
*
*/
public List doQuery(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, BoundSql boundSql) throws SQLException {
Statement stmt = null;
try {
Configuration configuration = ms.getConfiguration();
StatementHandler handler = configuration.newStatementHandler(wrapper, ms, parameter, rowBounds, resultHandler, boundSql);
// 1.准备Statement对象,并设置Statement对象的参数
stmt = prepareStatement(handler, ms.getStatementLog());
// 2. StatementHandler执行query()方法,返回List结果
return handler.query(stmt, resultHandler);
} finally {
closeStatement(stmt);
}
}
private Statement prepareStatement(StatementHandler handler, Log statementLog) throws SQLException {
Statement stmt;
Connection connection = getConnection(statementLog);
stmt = handler.prepare(connection);
//对创建的Statement对象设置参数,即设置SQL 语句中 ? 设置为指定的参数
handler.parameterize(stmt);
return stmt;
}
以上我们可以总结StatementHandler对象主要完成两个工作:
对于JDBC的PreparedStatement类型的对象,创建的过程中,我们使用的是SQL语句字符串会包含 若干个? 占位符,我们其后再对占位符进行设值。 StatementHandler通过parameterize(statement)方法对Statement进行设值;
StatementHandler通过List
query(Statement statement, ResultHandler resultHandler)方法来完成执行Statement,和将Statement对象返回的resultSet封装成List;
/**
* StatementHandler 类的parameterize(statement) 方法实现
*/
public void parameterize(Statement statement) throws SQLException {
//使用ParameterHandler对象来完成对Statement的设值
parameterHandler.setParameters((PreparedStatement) statement);
}
/**
*
*ParameterHandler类的setParameters(PreparedStatement ps) 实现
* 对某一个Statement进行设置参数
*/
public void setParameters(PreparedStatement ps) throws SQLException {
ErrorContext.instance().activity("setting parameters").object(mappedStatement.getParameterMap().getId());
List parameterMappings = boundSql.getParameterMappings();
if (parameterMappings != null) {
for (int i = 0; i < parameterMappings.size(); i++) {
ParameterMapping parameterMapping = parameterMappings.get(i);
if (parameterMapping.getMode() != ParameterMode.OUT) {
Object value;
String propertyName = parameterMapping.getProperty();
if (boundSql.hasAdditionalParameter(propertyName)) { // issue #448 ask first for additional params
value = boundSql.getAdditionalParameter(propertyName);
} else if (parameterObject == null) {
value = null;
} else if (typeHandlerRegistry.hasTypeHandler(parameterObject.getClass())) {
value = parameterObject;
} else {
MetaObject metaObject = configuration.newMetaObject(parameterObject);
value = metaObject.getValue(propertyName);
}
// 每一个Mapping都有一个TypeHandler,根据TypeHandler来对preparedStatement进行设置参数
TypeHandler typeHandler = parameterMapping.getTypeHandler();
JdbcType jdbcType = parameterMapping.getJdbcType();
if (value == null && jdbcType == null) jdbcType = configuration.getJdbcTypeForNull();
// 设置参数
typeHandler.setParameter(ps, i + 1, value, jdbcType);
}
}
}
}
从上述的代码可以看到,StatementHandler 的parameterize(Statement) 方法调用了 ParameterHandler的setParameters(statement) 方法, ParameterHandler的setParameters(Statement)方法负责 根据我们输入的参数,对statement对象的 ? 占位符处进行赋值
。
/**
* PreParedStatement类的query方法实现
*/
public List query(Statement statement, ResultHandler resultHandler) throws SQLException {
// 1.调用preparedStatemnt。execute()方法,然后将resultSet交给ResultSetHandler处理
PreparedStatement ps = (PreparedStatement) statement;
ps.execute();
//2. 使用ResultHandler来处理ResultSet
return resultSetHandler. handleResultSets(ps);
}
/**
*ResultSetHandler类的handleResultSets()方法实现
*
*/
public List
从上述代码我们可以看出,StatementHandler 的ListResultSetHandler的handleResultSets(Statement) 方法会将Statement语句执行后生成的resultSet 结果集转换成List
:
public List handleResultSets(Statement stmt) throws SQLException {
final List multipleResults = new ArrayList();
int resultSetCount = 0;
ResultSetWrapper rsw = getFirstResultSet(stmt);
List resultMaps = mappedStatement.getResultMaps();
int resultMapCount = resultMaps.size();
validateResultMapsCount(rsw, resultMapCount);
while (rsw != null && resultMapCount > resultSetCount) {
ResultMap resultMap = resultMaps.get(resultSetCount);
//将resultSet
handleResultSet(rsw, resultMap, multipleResults, null);
rsw = getNextResultSet(stmt);
cleanUpAfterHandlingResultSet();
resultSetCount++;
}
String[] resultSets = mappedStatement.getResulSets();
if (resultSets != null) {
while (rsw != null && resultSetCount < resultSets.length) {
ResultMapping parentMapping = nextResultMaps.get(resultSets[resultSetCount]);
if (parentMapping != null) {
String nestedResultMapId = parentMapping.getNestedResultMapId();
ResultMap resultMap = configuration.getResultMap(nestedResultMapId);
handleResultSet(rsw, resultMap, null, parentMapping);
}
rsw = getNextResultSet(stmt);
cleanUpAfterHandlingResultSet();
resultSetCount++;
}
}
return collapseSingleResultList(multipleResults);
}
#7 MyBatis初始化机制# ##7.1 MyBatis的初始化做了什么## 任何框架的初始化,无非是加载自己运行时所需要的配置信息
。MyBatis的配置信息,大概包含以下信息,其高层级结构如下:
MyBatis的上述配置信息会配置在XML配置文件中,那么,这些信息被加载进入MyBatis内部,MyBatis是怎样维护的呢?
MyBatis采用了一个非常直白和简单的方式---使用 org.apache.ibatis.session.Configuration
对象作为一个所有配置信息的容器,Configuration对象的组织结构和XML配置文件的组织结构几乎完全一样
(当然,Configuration对象的功能并不限于此,它还负责创建一些MyBatis内部使用的对象,如Executor等,这将在后续的文章中讨论)。如下图所示:
MyBatis根据初始化好Configuration信息,这时候用户就可以使用MyBatis进行数据库操作了。可以这么说,MyBatis初始化的过程,就是创建 Configuration对象的过程
。
MyBatis的初始化可以有两种方式:
基于XML配置文件:基于XML配置文件的方式是将MyBatis的所有配置信息放在XML文件中,MyBatis通过加载并XML配置文件,将配置文信息组装成内部的Configuration对象。
基于Java API:这种方式不使用XML配置文件,需要MyBatis使用者在Java代码中,手动创建Configuration对象,然后将配置参数set 进入Configuration对象中。
接下来我们将通过 基于XML配置文件方式的MyBatis初始化,深入探讨MyBatis是如何通过配置文件构建Configuration对象,并使用它。
##7.2 基于XML配置文件创建Configuration对象## 现在就从使用MyBatis的简单例子入手,深入分析一下MyBatis是怎样完成初始化的,都初始化了什么。看以下代码:
String resource = "mybatis-config.xml";
InputStream inputStream = Resources.getResourceAsStream(resource);
SqlSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(inputStream);
SqlSession sqlSession = sqlSessionFactory.openSession();
List list = sqlSession.selectList("com.foo.bean.BlogMapper.queryAllBlogInfo");
有过MyBatis使用经验的读者会知道,上述语句的作用是执行com.foo.bean.BlogMapper.queryAllBlogInfo 定义的SQL语句,返回一个List结果集。总的来说,上述代码经历了mybatis初始化 -->创建SqlSession -->执行SQL语句
返回结果三个过程。
上述代码的功能是根据配置文件mybatis-config.xml 配置文件,创建SqlSessionFactory对象,然后产生SqlSession,执行SQL语句。而mybatis的初始化就发生在第三句:SqlSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(inputStream);
现在就让我们看看第三句到底发生了什么。
SqlSessionFactoryBuilder根据传入的数据流生成Configuration对象,然后根据Configuration对象创建默认的SqlSessionFactory实例。
初始化的基本过程如下序列图所示:
由上图所示,mybatis初始化要经过简单的以下几步:
调用SqlSessionFactoryBuilder对象的build(inputStream)方法;
SqlSessionFactoryBuilder会根据输入流inputStream等信息创建XMLConfigBuilder对象;
SqlSessionFactoryBuilder调用XMLConfigBuilder对象的parse()方法;
XMLConfigBuilder对象返回Configuration对象;
SqlSessionFactoryBuilder根据Configuration对象创建一个DefaultSessionFactory对象;
SqlSessionFactoryBuilder返回 DefaultSessionFactory对象给Client,供Client使用。
SqlSessionFactoryBuilder相关的代码如下所示:
public SqlSessionFactory build(InputStream inputStream) {
return build(inputStream, null, null);
}
public SqlSessionFactory build(InputStream inputStream, String environment, Properties properties) {
try {
//2. 创建XMLConfigBuilder对象用来解析XML配置文件,生成Configuration对象
XMLConfigBuilder parser = new XMLConfigBuilder(inputStream, environment, properties);
//3. 将XML配置文件内的信息解析成Java对象Configuration对象
Configuration config = parser.parse();
//4. 根据Configuration对象创建出SqlSessionFactory对象
return build(config);
} catch (Exception e) {
throw ExceptionFactory.wrapException("Error building SqlSession.", e);
} finally {
ErrorContext.instance().reset();
try {
inputStream.close();
} catch (IOException e) {
// Intentionally ignore. Prefer previous error.
}
}
}
// 从此处可以看出,MyBatis内部通过Configuration对象来创建SqlSessionFactory,用户也可以自己通过API构造好Configuration对象,调用此方法创SqlSessionFactory
public SqlSessionFactory build(Configuration config) {
return new DefaultSqlSessionFactory(config);
}
上述的初始化过程中,涉及到了以下几个对象:
SqlSessionFactoryBuilder : SqlSessionFactory的构造器,用于创建SqlSessionFactory,采用了Builder设计模式
Configuration :该对象是mybatis-config.xml文件中所有mybatis配置信息
SqlSessionFactory:SqlSession工厂类,以工厂形式创建SqlSession对象,采用了Factory工厂设计模式
XmlConfigParser :负责将mybatis-config.xml配置文件解析成Configuration对象,共SqlSessonFactoryBuilder使用,创建SqlSessionFactory
当SqlSessionFactoryBuilder执行build()方法,调用了XMLConfigBuilder的parse()方法,然后返回了Configuration对象
。那么parse()方法是如何处理XML文件,生成Configuration对象的呢?将XML配置文件的信息转换为Document对象
,而XML配置定义文件DTD转换成XMLMapperEntityResolver对象
,然后将二者封装到XpathParser对象中
,XpathParser的作用是提供根据Xpath表达式获取基本的DOM节点Node信息的操作
。如下图所示:会从XPathParser中取出 节点对应的Node对象,然后解析此Node节点的子Node
:properties, settings, typeAliases,typeHandlers, objectFactory, objectWrapperFactory, plugins, environments,databaseIdProvider, mappers:public Configuration parse() {
if (parsed) {
throw new BuilderException("Each XMLConfigBuilder can only be used once.");
}
parsed = true;
//源码中没有这一句,只有 parseConfiguration(parser.evalNode("/configuration"));
//为了让读者看得更明晰,源码拆分为以下两句
XNode configurationNode = parser.evalNode("/configuration");
parseConfiguration(configurationNode);
return configuration;
}
/**
* 解析 "/configuration"节点下的子节点信息,然后将解析的结果设置到Configuration对象中
*/
private void parseConfiguration(XNode root) {
try {
//1.首先处理properties 节点
propertiesElement(root.evalNode("properties")); //issue #117 read properties first
//2.处理typeAliases
typeAliasesElement(root.evalNode("typeAliases"));
//3.处理插件
pluginElement(root.evalNode("plugins"));
//4.处理objectFactory
objectFactoryElement(root.evalNode("objectFactory"));
//5.objectWrapperFactory
objectWrapperFactoryElement(root.evalNode("objectWrapperFactory"));
//6.settings
settingsElement(root.evalNode("settings"));
//7.处理environments
environmentsElement(root.evalNode("environments")); // read it after objectFactory and objectWrapperFactory issue #631
//8.database
databaseIdProviderElement(root.evalNode("databaseIdProvider"));
//9.typeHandlers
typeHandlerElement(root.evalNode("typeHandlers"));
//10.mappers
mapperElement(root.evalNode("mappers"));
} catch (Exception e) {
throw new BuilderException("Error parsing SQL Mapper Configuration. Cause: " + e, e);
}
}
注意:在上述代码中,还有一个非常重要的地方,就是解析XML配置文件子节点
,MyBatis的特性和理念都体现在此Mapper的配置和设计上。
解析子节点的过程这里就不一一介绍了,用户可以参照MyBatis源码仔细揣摩,我们就看上述的environmentsElement(root.evalNode("environments")); 方法是如何将environments的信息解析出来,设置到Configuration对象中的:
/**
* 解析environments节点,并将结果设置到Configuration对象中
* 注意:创建envronment时,如果SqlSessionFactoryBuilder指定了特定的环境(即数据源);
* 则返回指定环境(数据源)的Environment对象,否则返回默认的Environment对象;
* 这种方式实现了MyBatis可以连接多数据源
*/
private void environmentsElement(XNode context) throws Exception {
if (context != null)
{
if (environment == null)
{
environment = context.getStringAttribute("default");
}
for (XNode child : context.getChildren())
{
String id = child.getStringAttribute("id");
if (isSpecifiedEnvironment(id))
{
//1.创建事务工厂 TransactionFactory
TransactionFactory txFactory = transactionManagerElement(child.evalNode("transactionManager"));
DataSourceFactory dsFactory = dataSourceElement(child.evalNode("dataSource"));
//2.创建数据源DataSource
DataSource dataSource = dsFactory.getDataSource();
//3. 构造Environment对象
Environment.Builder environmentBuilder = new Environment.Builder(id)
.transactionFactory(txFactory)
.dataSource(dataSource);
//4. 将创建的Envronment对象设置到configuration 对象中
configuration.setEnvironment(environmentBuilder.build());
}
}
}
}
private boolean isSpecifiedEnvironment(String id)
{
if (environment == null)
{
throw new BuilderException("No environment specified.");
}
else if (id == null)
{
throw new BuilderException("Environment requires an id attribute.");
}
else if (environment.equals(id))
{
return true;
}
return false;
}
将上述的MyBatis初始化基本过程的序列图细化:
##7.3 基于Java API手动加载XML配置文件创建Configuration对象,并使用SqlSessionFactory对象## 我们可以使用XMLConfigBuilder手动解析XML配置文件来创建Configuration对象,代码如下:
String resource = "mybatis-config.xml";
InputStream inputStream = Resources.getResourceAsStream(resource);
// 手动创建XMLConfigBuilder,并解析创建Configuration对象
XMLConfigBuilder parser = new XMLConfigBuilder(inputStream, null,null);
Configuration configuration=parse();
// 使用Configuration对象创建SqlSessionFactory
SqlSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(configuration);
// 使用MyBatis
SqlSession sqlSession = sqlSessionFactory.openSession();
List list = sqlSession.selectList("com.foo.bean.BlogMapper.queryAllBlogInfo");
##7.4 涉及到的设计模式## 初始化的过程涉及到创建各种对象,所以会使用一些创建型的设计模式。在初始化的过程中,Builder模式运用的比较多
。
###7.4.1 Builder模式应用1: SqlSessionFactory的创建### 对于创建SqlSessionFactory时,会根据情况提供不同的参数,其参数组合可以有以下几种
:
由于构造时参数不定,可以为其创建一个构造器Builder,将SqlSessionFactory的构建过程和表示分开
:
MyBatis将SqlSessionFactoryBuilder和SqlSessionFactory相互独立。
###7.4.2 Builder模式应用2: 数据库连接环境Environment对象的创建### 在构建Configuration对象的过程中,XMLConfigParser解析 mybatis XML配置文件节点
private void environmentsElement(XNode context) throws Exception {
if (context != null) {
if (environment == null) {
environment = context.getStringAttribute("default");
}
for (XNode child : context.getChildren()) {
String id = child.getStringAttribute("id");
//是和默认的环境相同时,解析之
if (isSpecifiedEnvironment(id)) {
TransactionFactory txFactory = transactionManagerElement(child.evalNode("transactionManager"));
DataSourceFactory dsFactory = dataSourceElement(child.evalNode("dataSource"));
DataSource dataSource = dsFactory.getDataSource();
//使用了Environment内置的构造器Builder,传递id 事务工厂和数据源
Environment.Builder environmentBuilder = new Environment.Builder(id)
.transactionFactory(txFactory)
.dataSource(dataSource);
configuration.setEnvironment(environmentBuilder.build());
}
}
}
}
在Environment内部,定义了静态内部Builder类:
public final class Environment {
private final String id;
private final TransactionFactory transactionFactory;
private final DataSource dataSource;
public Environment(String id, TransactionFactory transactionFactory, DataSource dataSource) {
if (id == null) {
throw new IllegalArgumentException("Parameter 'id' must not be null");
}
if (transactionFactory == null) {
throw new IllegalArgumentException("Parameter 'transactionFactory' must not be null");
}
this.id = id;
if (dataSource == null) {
throw new IllegalArgumentException("Parameter 'dataSource' must not be null");
}
this.transactionFactory = transactionFactory;
this.dataSource = dataSource;
}
public static class Builder {
private String id;
private TransactionFactory transactionFactory;
private DataSource dataSource;
public Builder(String id) {
this.id = id;
}
public Builder transactionFactory(TransactionFactory transactionFactory) {
this.transactionFactory = transactionFactory;
return this;
}
public Builder dataSource(DataSource dataSource) {
this.dataSource = dataSource;
return this;
}
public String id() {
return this.id;
}
public Environment build() {
return new Environment(this.id, this.transactionFactory, this.dataSource);
}
}
public String getId() {
return this.id;
}
public TransactionFactory getTransactionFactory() {
return this.transactionFactory;
}
public DataSource getDataSource() {
return this.dataSource;
}
}
#8 MyBatis数据源与连接池# ##8.1 MyBatis数据源DataSource分类## MyBatis数据源实现是在以下四个包中:
MyBatis把数据源DataSource分为三种:
UNPOOLED 不使用连接池的数据源
POOLED 使用连接池的数据源
JNDI 使用JNDI实现的数据源
即:
相应地,MyBatis内部分别定义了实现了java.sql.DataSource接口的UnpooledDataSource,PooledDataSource类来表示UNPOOLED、POOLED类型的数据源
。 如下图所示:
对于JNDI类型的数据源DataSource,则是通过JNDI上下文中取值。
##8.2 数据源DataSource的创建过程## MyBatis数据源DataSource对象的创建发生在MyBatis初始化的过程中
。下面让我们一步步地了解MyBatis是如何创建数据源DataSource的。
在mybatis的XML配置文件中,使用
type=”POOLED” :MyBatis会创建PooledDataSource实例
type=”UNPOOLED” :MyBatis会创建UnpooledDataSource实例
type=”JNDI” :MyBatis会从JNDI服务上查找DataSource实例,然后返回使用
MyBatis是通过工厂模式来创建数据源DataSource对象的
,MyBatis定义了抽象的工厂接口:org.apache.ibatis.datasource.DataSourceFactory,通过其getDataSource()方法返回数据源DataSource:public interface DataSourceFactory {
void setProperties(Properties props);
// 生产DataSource
DataSource getDataSource();
}
上述三种不同类型的type,则有对应的以下dataSource工厂:
POOLED PooledDataSourceFactory
UNPOOLED UnpooledDataSourceFactory
JNDI JndiDataSourceFactory
其类图如下所示:
将其放到Configuration对象内的Environment对象中
,供以后使用。##8.3 DataSource什么时候创建Connection对象## 当我们需要创建SqlSession对象并需要执行SQL语句时,这时候MyBatis才会去调用dataSource对象来创建java.sql.Connection对象。也就是说,java.sql.Connection对象的创建一直延迟到执行SQL语句的时候
。
比如,我们有如下方法执行一个简单的SQL语句:
String resource = "mybatis-config.xml";
InputStream inputStream = Resources.getResourceAsStream(resource);
SqlSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(inputStream);
SqlSession sqlSession = sqlSessionFactory.openSession();
sqlSession.selectList("SELECT * FROM STUDENTS");
前4句都不会导致java.sql.Connection对象的创建,只有当第5句sqlSession.selectList("SELECT * FROM STUDENTS")
,才会触发MyBatis在底层执行下面这个方法来创建java.sql.Connection对象:
protected void openConnection() throws SQLException {
if (log.isDebugEnabled()) {
log.debug("Opening JDBC Connection");
}
connection = dataSource.getConnection();
if (level != null) {
connection.setTransactionIsolation(level.getLevel());
}
setDesiredAutoCommit(autoCommmit);
}
##8.4 不使用连接池的UnpooledDataSource## 当
使用UnpooledDataSource的getConnection(),每调用一次就会产生一个新的Connection实例对象
。
UnPooledDataSource的getConnection()方法实现如下:
/*
* UnpooledDataSource的getConnection()实现
*/
public Connection getConnection() throws SQLException
{
return doGetConnection(username, password);
}
private Connection doGetConnection(String username, String password) throws SQLException
{
//封装username和password成properties
Properties props = new Properties();
if (driverProperties != null)
{
props.putAll(driverProperties);
}
if (username != null)
{
props.setProperty("user", username);
}
if (password != null)
{
props.setProperty("password", password);
}
return doGetConnection(props);
}
/*
* 获取数据连接
*/
private Connection doGetConnection(Properties properties) throws SQLException
{
//1.初始化驱动
initializeDriver();
//2.从DriverManager中获取连接,获取新的Connection对象
Connection connection = DriverManager.getConnection(url, properties);
//3.配置connection属性
configureConnection(connection);
return connection;
}
如上代码所示,UnpooledDataSource会做以下事情:
初始化驱动:判断driver驱动是否已经加载到内存中,如果还没有加载,则会动态地加载driver类,并实例化一个Driver对象,使用DriverManager.registerDriver()方法将其注册到内存中,以供后续使用。
创建Connection对象:使用DriverManager.getConnection()方法创建连接。
配置Connection对象:设置是否自动提交autoCommit和隔离级别isolationLevel。
返回Connection对象。
上述的序列图如下所示:
总结:从上述的代码中可以看到,我们每调用一次getConnection()方法,都会通过DriverManager.getConnection()返回新的java.sql.Connection实例
。
##8.5 为什么要使用连接池?##
首先让我们来看一下创建一个java.sql.Connection对象的资源消耗。我们通过连接Oracle数据库,创建创建Connection对象,来看创建一个Connection对象、执行SQL语句各消耗多长时间。代码如下:
public static void main(String[] args) throws Exception
{
String sql = "select * from hr.employees where employee_id < ? and employee_id >= ?";
PreparedStatement st = null;
ResultSet rs = null;
long beforeTimeOffset = -1L; //创建Connection对象前时间
long afterTimeOffset = -1L; //创建Connection对象后时间
long executeTimeOffset = -1L; //创建Connection对象后时间
Connection con = null;
Class.forName("oracle.jdbc.driver.OracleDriver");
beforeTimeOffset = new Date().getTime();
System.out.println("before:\t" + beforeTimeOffset);
con = DriverManager.getConnection("jdbc:oracle:thin:@127.0.0.1:1521:xe", "louluan", "123456");
afterTimeOffset = new Date().getTime();
System.out.println("after:\t\t" + afterTimeOffset);
System.out.println("Create Costs:\t\t" + (afterTimeOffset - beforeTimeOffset) + " ms");
st = con.prepareStatement(sql);
//设置参数
st.setInt(1, 101);
st.setInt(2, 0);
//查询,得出结果集
rs = st.executeQuery();
executeTimeOffset = new Date().getTime();
System.out.println("Exec Costs:\t\t" + (executeTimeOffset - afterTimeOffset) + " ms");
}
上述程序的执行结果为:
从此结果可以清楚地看出,创建一个Connection对象,用了250 毫秒;而执行SQL的时间用了170毫秒
。
创建一个Connection对象用了250毫秒!这个时间对计算机来说可以说是一个非常奢侈的!
这仅仅是一个Connection对象就有这么大的代价,设想一下另外一种情况:如果我们在Web应用程序中,为用户的每一个请求就操作一次数据库,当有10000个在线用户并发操作的话,对计算机而言,仅仅创建Connection对象不包括做业务的时间就要损耗10000×250ms= 250 0000 ms = 2500 s = 41.6667 min,竟然要41分钟!!!如果对高用户群体使用这样的系统,简直就是开玩笑!
创建一个java.sql.Connection对象的代价是如此巨大,是因为创建一个Connection对象的过程,在底层就相当于和数据库建立的通信连接,在建立通信连接的过程,消耗了这么多的时间,而往往我们建立连接后(即创建Connection对象后),就执行一个简单的SQL语句,然后就要抛弃掉,这是一个非常大的资源浪费!
对于需要频繁地跟数据库交互的应用程序,可以在创建了Connection对象,并操作完数据库后,可以不释放掉资源,而是将它放到内存中
,当下次需要操作数据库时,可以直接从内存中取出Connection对象,不需要再创建了,这样就极大地节省了创建Connection对象的资源消耗。由于内存也是有限和宝贵的,这又对我们对内存中的Connection对象怎么有效地维护提出了很高的要求
。我们将在内存中存放Connection对象的容器称之为连接池(Connection Pool)。下面让我们来看一下MyBatis的线程池是怎样实现的。
##8.6 使用了连接池的PooledDataSource## 同样地,我们也是使用PooledDataSource的getConnection()方法来返回Connection对象。现在让我们看一下它的基本原理:
PooledDataSource将java.sql.Connection对象包裹成PooledConnection对象放到了PoolState类型的容器中维护
。 MyBatis将连接池中的PooledConnection分为两种状态:空闲状态(idle)和活动状态(active)
,这两种状态的PooledConnection对象分别被存储到PoolState容器内的idleConnections和activeConnections两个List集合中
:
idleConnections:
空闲(idle)状态PooledConnection对象被放置到此集合中,表示当前闲置的没有被使用的PooledConnection集合,调用PooledDataSource的getConnection()方法时,会优先从此集合中取PooledConnection对象。当用完一个java.sql.Connection对象时,MyBatis会将其包裹成PooledConnection对象放到此集合中。
activeConnections:
活动(active)状态的PooledConnection对象被放置到名为activeConnections的ArrayList中,表示当前正在被使用的PooledConnection集合,调用PooledDataSource的getConnection()方法时,会优先从idleConnections集合中取PooledConnection对象,如果没有,则看此集合是否已满,如果未满,PooledDataSource会创建出一个PooledConnection,添加到此集合中,并返回
。
PoolState连接池的大致结构如下所示:
下面让我们看一下PooledDataSource 的getConnection()方法获取Connection对象的实现:
public Connection getConnection() throws SQLException {
return popConnection(dataSource.getUsername(), dataSource.getPassword()).getProxyConnection();
}
public Connection getConnection(String username, String password) throws SQLException {
return popConnection(username, password).getProxyConnection();
}
上述的popConnection()方法,会从连接池中返回一个可用的PooledConnection对象,然后再调用getProxyConnection()方法最终返回Conection对象
。(至于为什么会有getProxyConnection(),请关注下一节)。
现在让我们看一下popConnection()方法到底做了什么:
先看是否有空闲(idle)状态下的PooledConnection对象,如果有,就直接返回一个可用的PooledConnection对象;否则进行第2步。
查看活动状态的PooledConnection池activeConnections是否已满;如果没有满,则创建一个新的PooledConnection对象,然后放到activeConnections池中,然后返回此PooledConnection对象;否则进行第三步;
看最先进入activeConnections池中的PooledConnection对象是否已经过期:如果已经过期,从activeConnections池中移除此对象,然后创建一个新的PooledConnection对象,添加到activeConnections中,然后将此对象返回;否则进行第4步。
线程等待,循环2步
/*
* 传递一个用户名和密码,从连接池中返回可用的PooledConnection
*/
private PooledConnection popConnection(String username, String password) throws SQLException
{
boolean countedWait = false;
PooledConnection conn = null;
long t = System.currentTimeMillis();
int localBadConnectionCount = 0;
while (conn == null)
{
synchronized (state)
{
if (state.idleConnections.size() > 0)
{
// 连接池中有空闲连接,取出第一个
conn = state.idleConnections.remove(0);
if (log.isDebugEnabled())
{
log.debug("Checked out connection " + conn.getRealHashCode() + " from pool.");
}
}
else
{
// 连接池中没有空闲连接,则取当前正在使用的连接数小于最大限定值,
if (state.activeConnections.size() < poolMaximumActiveConnections)
{
// 创建一个新的connection对象
conn = new PooledConnection(dataSource.getConnection(), this);
@SuppressWarnings("unused")
//used in logging, if enabled
Connection realConn = conn.getRealConnection();
if (log.isDebugEnabled())
{
log.debug("Created connection " + conn.getRealHashCode() + ".");
}
}
else
{
// Cannot create new connection 当活动连接池已满,不能创建时,取出活动连接池的第一个,即最先进入连接池的PooledConnection对象
// 计算它的校验时间,如果校验时间大于连接池规定的最大校验时间,则认为它已经过期了,利用这个PoolConnection内部的realConnection重新生成一个PooledConnection
//
PooledConnection oldestActiveConnection = state.activeConnections.get(0);
long longestCheckoutTime = oldestActiveConnection.getCheckoutTime();
if (longestCheckoutTime > poolMaximumCheckoutTime)
{
// Can claim overdue connection
state.claimedOverdueConnectionCount++;
state.accumulatedCheckoutTimeOfOverdueConnections += longestCheckoutTime;
state.accumulatedCheckoutTime += longestCheckoutTime;
state.activeConnections.remove(oldestActiveConnection);
if (!oldestActiveConnection.getRealConnection().getAutoCommit())
{
oldestActiveConnection.getRealConnection().rollback();
}
conn = new PooledConnection(oldestActiveConnection.getRealConnection(), this);
oldestActiveConnection.invalidate();
if (log.isDebugEnabled())
{
log.debug("Claimed overdue connection " + conn.getRealHashCode() + ".");
}
}
else
{
//如果不能释放,则必须等待有
// Must wait
try
{
if (!countedWait)
{
state.hadToWaitCount++;
countedWait = true;
}
if (log.isDebugEnabled())
{
log.debug("Waiting as long as " + poolTimeToWait + " milliseconds for connection.");
}
long wt = System.currentTimeMillis();
state.wait(poolTimeToWait);
state.accumulatedWaitTime += System.currentTimeMillis() - wt;
}
catch (InterruptedException e)
{
break;
}
}
}
}
//如果获取PooledConnection成功,则更新其信息
if (conn != null)
{
if (conn.isValid())
{
if (!conn.getRealConnection().getAutoCommit())
{
conn.getRealConnection().rollback();
}
conn.setConnectionTypeCode(assembleConnectionTypeCode(dataSource.getUrl(), username, password));
conn.setCheckoutTimestamp(System.currentTimeMillis());
conn.setLastUsedTimestamp(System.currentTimeMillis());
state.activeConnections.add(conn);
state.requestCount++;
state.accumulatedRequestTime += System.currentTimeMillis() - t;
}
else
{
if (log.isDebugEnabled())
{
log.debug("A bad connection (" + conn.getRealHashCode() + ") was returned from the pool, getting another connection.");
}
state.badConnectionCount++;
localBadConnectionCount++;
conn = null;
if (localBadConnectionCount > (poolMaximumIdleConnections + 3))
{
if (log.isDebugEnabled())
{
log.debug("PooledDataSource: Could not get a good connection to the database.");
}
throw new SQLException("PooledDataSource: Could not get a good connection to the database.");
}
}
}
}
}
if (conn == null)
{
if (log.isDebugEnabled())
{
log.debug("PooledDataSource: Unknown severe error condition. The connection pool returned a null connection.");
}
throw new SQLException("PooledDataSource: Unknown severe error condition. The connection pool returned a null connection.");
}
return conn;
}
对应的处理流程图如下所示:
如上所示,对于PooledDataSource的getConnection()方法内,先是调用类PooledDataSource的popConnection()方法返回了一个PooledConnection对象,然后调用了PooledConnection的getProxyConnection()来返回Connection对象
。
当我们的程序中使用完Connection对象时,如果不使用数据库连接池,我们一般会调用 connection.close()方法
,关闭connection连接,释放资源。如下所示:
private void test() throws ClassNotFoundException, SQLException
{
String sql = "select * from hr.employees where employee_id < ? and employee_id >= ?";
PreparedStatement st = null;
ResultSet rs = null;
Connection con = null;
Class.forName("oracle.jdbc.driver.OracleDriver");
try
{
con = DriverManager.getConnection("jdbc:oracle:thin:@127.0.0.1:1521:xe", "louluan", "123456");
st = con.prepareStatement(sql);
//设置参数
st.setInt(1, 101);
st.setInt(2, 0);
//查询,得出结果集
rs = st.executeQuery();
//取数据,省略
//关闭,释放资源
con.close();
}
catch (SQLException e)
{
con.close();
e.printStackTrace();
}
}
调用过close()方法的Connection对象所持有的资源会被全部释放掉,Connection对象也就不能再使用
。
那么,如果我们使用了连接池,我们在用完了Connection对象时,需要将它放在连接池中,该怎样做呢?
为了和一般的使用Conneciton对象的方式保持一致,我们希望当Connection使用完后,调用.close()方法,而实际上Connection资源并没有被释放,而实际上被添加到了连接池中。这样可以做到吗?答案是可以。上述的要求从另外一个角度来描述就是:能否提供一种机制,让我们知道Connection对象调用了什么方法,从而根据不同的方法自定义相应的处理机制。恰好代理机制就可以完成上述要求
.
怎样实现Connection对象调用了close()方法,而实际是将其添加到连接池中:
这是要使用代理模式,为真正的Connection对象创建一个代理对象,代理对象所有的方法都是调用相应的真正Connection对象的方法实现。当代理对象执行close()方法时,要特殊处理,不调用真正Connection对象的close()方法,而是将Connection对象添加到连接池中
。
MyBatis的PooledDataSource的PoolState内部维护的对象是PooledConnection类型的对象,而PooledConnection则是对真正的数据库连接java.sql.Connection实例对象的包裹器
。
PooledConnection对象内持有一个真正的数据库连接java.sql.Connection实例对象和一个java.sql.Connection的代理
,其部分定义如下:
class PooledConnection implements InvocationHandler {
//......
//所创建它的datasource引用
private PooledDataSource dataSource;
//真正的Connection对象
private Connection realConnection;
//代理自己的代理Connection
private Connection proxyConnection;
//......
}
PooledConenction实现了InvocationHandler接口,并且,proxyConnection对象也是根据这个它来生成的代理对象:
public PooledConnection(Connection connection, PooledDataSource dataSource) {
this.hashCode = connection.hashCode();
this.realConnection = connection;
this.dataSource = dataSource;
this.createdTimestamp = System.currentTimeMillis();
this.lastUsedTimestamp = System.currentTimeMillis();
this.valid = true;
this.proxyConnection = (Connection) Proxy.newProxyInstance(Connection.class.getClassLoader(), IFACES, this);
}
实际上,我们调用PooledDataSource的getConnection()方法返回的就是这个proxyConnection对象。当我们调用此proxyConnection对象上的任何方法时,都会调用PooledConnection对象内invoke()方法
。
让我们看一下PooledConnection类中的invoke()方法定义:
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
String methodName = method.getName();
//当调用关闭的时候,回收此Connection到PooledDataSource中
if (CLOSE.hashCode() == methodName.hashCode() && CLOSE.equals(methodName)) {
dataSource.pushConnection(this);
return null;
} else {
try {
if (!Object.class.equals(method.getDeclaringClass())) {
checkConnection();
}
return method.invoke(realConnection, args);
} catch (Throwable t) {
throw ExceptionUtil.unwrapThrowable(t);
}
}
}
从上述代码可以看到,当我们使用了pooledDataSource.getConnection()返回的Connection对象的close()方法时,不会调用真正Connection的close()方法,而是将此Connection对象放到连接池中
。
##8.7 JNDI类型的数据源DataSource## 对于JNDI类型的数据源DataSource的获取就比较简单,MyBatis定义了一个JndiDataSourceFactory工厂来创建通过JNDI形式生成的DataSource。下面让我们看一下JndiDataSourceFactory的关键代码:
if (properties.containsKey(INITIAL_CONTEXT) && properties.containsKey(DATA_SOURCE))
{
//从JNDI上下文中找到DataSource并返回
Context ctx = (Context) initCtx.lookup(properties.getProperty(INITIAL_CONTEXT));
dataSource = (DataSource) ctx.lookup(properties.getProperty(DATA_SOURCE));
}
else if (properties.containsKey(DATA_SOURCE))
{
//从JNDI上下文中找到DataSource并返回
dataSource = (DataSource) initCtx.lookup(properties.getProperty(DATA_SOURCE));
}
#9 MyBatis事务管理机制# ##9.1 概述## 对数据库的事务而言,应该具有以下几点:创建(create)、提交(commit)、回滚(rollback)、关闭(close)
。对应地,MyBatis将事务抽象成了Transaction接口:
MyBatis的事务管理分为两种形式:
这两者的类图如下所示:
##9.2 事务的配置、创建和使用##
我们在使用MyBatis时,一般会在MyBatisXML配置文件中定义类似如下的信息:
其子节点
。
MyBatis事务的创建是交给TransactionFactory 事务工厂来创建的,如果我们将
/**
* 解析节点,创建对应的TransactionFactory
* @param context
* @return
* @throws Exception
*/
private TransactionFactory transactionManagerElement(XNode context) throws Exception {
if (context != null) {
String type = context.getStringAttribute("type");
Properties props = context.getChildrenAsProperties();
/*
* 在Configuration初始化的时候,会通过以下语句,给JDBC和MANAGED对应的工厂类
* typeAliasRegistry.registerAlias("JDBC", JdbcTransactionFactory.class);
* typeAliasRegistry.registerAlias("MANAGED", ManagedTransactionFactory.class);
* 下述的resolveClass(type).newInstance()会创建对应的工厂实例
*/
TransactionFactory factory = (TransactionFactory) resolveClass(type).newInstance();
factory.setProperties(props);
return factory;
}
throw new BuilderException("Environment declaration requires a TransactionFactory.");
}
如上述代码所示,如果type = "JDBC",则MyBatis会创建一个JdbcTransactionFactory.class 实例;如果type="MANAGED",则MyBatis会创建一个MangedTransactionFactory.class实例。
MyBatis对作为
,代码如下所示:
private void environmentsElement(XNode context) throws Exception {
if (context != null) {
if (environment == null) {
environment = context.getStringAttribute("default");
}
for (XNode child : context.getChildren()) {
String id = child.getStringAttribute("id");
//是和默认的环境相同时,解析之
if (isSpecifiedEnvironment(id)) {
//1.解析节点,决定创建什么类型的TransactionFactory
TransactionFactory txFactory = transactionManagerElement(child.evalNode("transactionManager"));
//2. 创建dataSource
DataSourceFactory dsFactory = dataSourceElement(child.evalNode("dataSource"));
DataSource dataSource = dsFactory.getDataSource();
//3. 使用了Environment内置的构造器Builder,传递id 事务工厂TransactionFactory和数据源DataSource
Environment.Builder environmentBuilder = new Environment.Builder(id)
.transactionFactory(txFactory)
.dataSource(dataSource);
configuration.setEnvironment(environmentBuilder.build());
}
}
}
}
Environment表示着一个数据库的连接,生成后的Environment对象会被设置到Configuration实例中
,以供后续的使用。
上述一直在讲事务工厂TransactionFactory来创建的Transaction,现在让我们看一下MyBatis中的TransactionFactory的定义吧。
事务工厂Transaction定义了创建Transaction的两个方法:一个是通过指定的Connection对象创建Transaction
,另外是通过数据源DataSource来创建Transaction
。与JDBC 和MANAGED两种Transaction相对应,TransactionFactory有两个对应的实现的子类:
通过事务工厂TransactionFactory很容易获取到Transaction对象实例。我们以JdbcTransaction为例,看一下JdbcTransactionFactory是怎样生成JdbcTransaction的,代码如下:
public class JdbcTransactionFactory implements TransactionFactory {
public void setProperties(Properties props) {
}
/**
* 根据给定的数据库连接Connection创建Transaction
* @param conn Existing database connection
* @return
*/
public Transaction newTransaction(Connection conn) {
return new JdbcTransaction(conn);
}
/**
* 根据DataSource、隔离级别和是否自动提交创建Transacion
*
* @param ds
* @param level Desired isolation level
* @param autoCommit Desired autocommit
* @return
*/
public Transaction newTransaction(DataSource ds, TransactionIsolationLevel level, boolean autoCommit) {
return new JdbcTransaction(ds, level, autoCommit);
}
}
如上说是,JdbcTransactionFactory会创建JDBC类型的Transaction,即JdbcTransaction。类似地,ManagedTransactionFactory也会创建ManagedTransaction。下面我们会分别深入JdbcTranaction 和ManagedTransaction,看它们到底是怎样实现事务管理的。
JdbcTransaction直接使用JDBC的提交和回滚事务管理机制
。它依赖与从dataSource中取得的连接connection 来管理transaction 的作用域,connection对象的获取被延迟到调用getConnection()方法。如果autocommit设置为on,开启状态的话,它会忽略commit和rollback。
直观地讲,就是JdbcTransaction是使用的java.sql.Connection 上的commit和rollback功能,JdbcTransaction只是相当于对java.sql.Connection事务处理进行了一次包装(wrapper),Transaction的事务管理都是通过java.sql.Connection实现的
。JdbcTransaction的代码实现如下:
public class JdbcTransaction implements Transaction {
private static final Log log = LogFactory.getLog(JdbcTransaction.class);
//数据库连接
protected Connection connection;
//数据源
protected DataSource dataSource;
//隔离级别
protected TransactionIsolationLevel level;
//是否为自动提交
protected boolean autoCommmit;
public JdbcTransaction(DataSource ds, TransactionIsolationLevel desiredLevel, boolean desiredAutoCommit) {
dataSource = ds;
level = desiredLevel;
autoCommmit = desiredAutoCommit;
}
public JdbcTransaction(Connection connection) {
this.connection = connection;
}
public Connection getConnection() throws SQLException {
if (connection == null) {
openConnection();
}
return connection;
}
/**
* commit()功能 使用connection的commit()
* @throws SQLException
*/
public void commit() throws SQLException {
if (connection != null && !connection.getAutoCommit()) {
if (log.isDebugEnabled()) {
log.debug("Committing JDBC Connection [" + connection + "]");
}
connection.commit();
}
}
/**
* rollback()功能 使用connection的rollback()
* @throws SQLException
*/
public void rollback() throws SQLException {
if (connection != null && !connection.getAutoCommit()) {
if (log.isDebugEnabled()) {
log.debug("Rolling back JDBC Connection [" + connection + "]");
}
connection.rollback();
}
}
/**
* close()功能 使用connection的close()
* @throws SQLException
*/
public void close() throws SQLException {
if (connection != null) {
resetAutoCommit();
if (log.isDebugEnabled()) {
log.debug("Closing JDBC Connection [" + connection + "]");
}
connection.close();
}
}
protected void setDesiredAutoCommit(boolean desiredAutoCommit) {
try {
if (connection.getAutoCommit() != desiredAutoCommit) {
if (log.isDebugEnabled()) {
log.debug("Setting autocommit to " + desiredAutoCommit + " on JDBC Connection [" + connection + "]");
}
connection.setAutoCommit(desiredAutoCommit);
}
} catch (SQLException e) {
// Only a very poorly implemented driver would fail here,
// and there's not much we can do about that.
throw new TransactionException("Error configuring AutoCommit. "
+ "Your driver may not support getAutoCommit() or setAutoCommit(). "
+ "Requested setting: " + desiredAutoCommit + ". Cause: " + e, e);
}
}
protected void resetAutoCommit() {
try {
if (!connection.getAutoCommit()) {
// MyBatis does not call commit/rollback on a connection if just selects were performed.
// Some databases start transactions with select statements
// and they mandate a commit/rollback before closing the connection.
// A workaround is setting the autocommit to true before closing the connection.
// Sybase throws an exception here.
if (log.isDebugEnabled()) {
log.debug("Resetting autocommit to true on JDBC Connection [" + connection + "]");
}
connection.setAutoCommit(true);
}
} catch (SQLException e) {
log.debug("Error resetting autocommit to true "
+ "before closing the connection. Cause: " + e);
}
}
protected void openConnection() throws SQLException {
if (log.isDebugEnabled()) {
log.debug("Opening JDBC Connection");
}
connection = dataSource.getConnection();
if (level != null) {
connection.setTransactionIsolation(level.getLevel());
}
setDesiredAutoCommit(autoCommmit);
}
}
ManagedTransaction让容器来管理事务Transaction的整个生命周期,意思就是说,使用ManagedTransaction的commit和rollback功能不会对事务有任何的影响,它什么都不会做,它将事务管理的权利移交给了容器来实现
。看如下Managed的实现代码大家就会一目了然:
/**
*
* 让容器管理事务transaction的整个生命周期
* connection的获取延迟到getConnection()方法的调用
* 忽略所有的commit和rollback操作
* 默认情况下,可以关闭一个连接connection,也可以配置它不可以关闭一个连接
* 让容器来管理transaction的整个生命周期
* @see ManagedTransactionFactory
*/
public class ManagedTransaction implements Transaction {
private static final Log log = LogFactory.getLog(ManagedTransaction.class);
private DataSource dataSource;
private TransactionIsolationLevel level;
private Connection connection;
private boolean closeConnection;
public ManagedTransaction(Connection connection, boolean closeConnection) {
this.connection = connection;
this.closeConnection = closeConnection;
}
public ManagedTransaction(DataSource ds, TransactionIsolationLevel level, boolean closeConnection) {
this.dataSource = ds;
this.level = level;
this.closeConnection = closeConnection;
}
public Connection getConnection() throws SQLException {
if (this.connection == null) {
openConnection();
}
return this.connection;
}
public void commit() throws SQLException {
// Does nothing
}
public void rollback() throws SQLException {
// Does nothing
}
public void close() throws SQLException {
if (this.closeConnection && this.connection != null) {
if (log.isDebugEnabled()) {
log.debug("Closing JDBC Connection [" + this.connection + "]");
}
this.connection.close();
}
}
protected void openConnection() throws SQLException {
if (log.isDebugEnabled()) {
log.debug("Opening JDBC Connection");
}
this.connection = this.dataSource.getConnection();
if (this.level != null) {
this.connection.setTransactionIsolation(this.level.getLevel());
}
}
}
注意:如果我们使用MyBatis构建本地程序,即不是WEB程序
,若将type设置成"MANAGED",那么,我们执行的任何update操作,即使我们最后执行了commit操作,数据也不会保留,不会对数据库造成任何影响
。因为我们将MyBatis配置成了“MANAGED”,即MyBatis自己不管理事务,而我们又是运行的本地程序,没有事务管理功能
,所以对数据库的update操作都是无效的。
#10 MyBatis关联查询# MyBatis 提供了高级的关联查询功能,可以很方便地将数据库获取的结果集映射到定义的Java Bean 中。下面通过一个实例,来展示一下Mybatis对于常见的一对多和多对一关系复杂映射是怎样处理的。
设计一个简单的博客系统,一个用户可以开多个博客,在博客中可以发表文章,允许发表评论,可以为文章加标签。博客系统主要有以下几张表构成:
Author表:作者信息表,记录作者的信息,用户名和密码,邮箱等。
Blog表:博客表,一个作者可以开多个博客,即Author和Blog的关系是一对多。
Post表:文章记录表,记录文章发表时间,标题,正文等信息;一个博客下可以有很多篇文章,Blog 和Post的关系是一对多。
Comments表:文章评论表,记录文章的评论,一篇文章可以有很多个评论:Post和Comments的对应关系是一对多。
Tag表:标签表,表示文章的标签分类,一篇文章可以有多个标签,而一个标签可以应用到不同的文章上,所以Tag和Post的关系是多对多的关系;(Tag和Post的多对多关系通过Post_Tag表体现)
Post_Tag表:记录 文章和标签的对应关系。
一般情况下,我们会根据每一张表的结构 创建与此相对应的JavaBean(或者Pojo),来完成对表的基本CRUD操作。
上述对单个表的JavaBean定义有时候不能满足业务上的需求。在业务上,一个Blog对象应该有其作者的信息和一个文章列表,如下图所示:
如果想得到这样的类的实例,则最起码要有一下几步:
通过Blog 的id 到Blog表里查询Blog信息,将查询到的blogId 和title 赋到Blog对象内;
根据查询到到blog信息中的authorId 去 Author表获取对应的author信息,获取Author对象,然后赋到Blog对象内;
根据 blogId 去 Post表里查询 对应的 Post文章列表,将List
对象赋到Blog对象中;
这样的话,在底层最起码调用三次查询语句,请看下列的代码:
/*
* 通过blogId获取BlogInfo对象
*/
public static BlogInfo ordinaryQueryOnTest(String blogId)
{
BigDecimal id = new BigDecimal(blogId);
SqlSession session = sqlSessionFactory.openSession();
BlogInfo blogInfo = new BlogInfo();
//1.根据blogid 查询Blog对象,将值设置到blogInfo中
Blog blog = (Blog)session.selectOne("com.foo.bean.BlogMapper.selectByPrimaryKey",id);
blogInfo.setBlogId(blog.getBlogId());
blogInfo.setTitle(blog.getTitle());
//2.根据Blog中的authorId,进入数据库查询Author信息,将结果设置到blogInfo对象中
Author author = (Author)session.selectOne("com.foo.bean.AuthorMapper.selectByPrimaryKey",blog.getAuthorId());
blogInfo.setAuthor(author);
//3.查询posts对象,设置进blogInfo中
List posts = session.selectList("com.foo.bean.PostMapper.selectByBlogId",blog.getBlogId());
blogInfo.setPosts(posts);
//以JSON字符串的形式将对象打印出来
JSONObject object = new JSONObject(blogInfo);
System.out.println(object.toString());
return blogInfo;
}
从上面的代码可以看出,想获取一个BlogInfo对象比较麻烦,总共要调用三次数据库查询,得到需要的信息,然后再组装BlogInfo对象。
##10.1 嵌套语句查询## mybatis提供了一种机制,叫做嵌套语句查询
,可以大大简化上述的操作,加入配置及代码如下:
/*
* 通过blogId获取BlogInfo对象
*/
public static BlogInfo nestedQueryOnTest(String blogId)
{
BigDecimal id = new BigDecimal(blogId);
SqlSession session = sqlSessionFactory.openSession();
BlogInfo blogInfo = new BlogInfo();
blogInfo = (BlogInfo)session.selectOne("com.foo.bean.BlogMapper.queryBlogInfoById",id);
JSONObject object = new JSONObject(blogInfo);
System.out.println(object.toString());
return blogInfo;
}
通过上述的代码完全可以实现前面的那个查询。这里我们在代码里只需要 blogInfo = (BlogInfo)session.selectOne("com.foo.bean.BlogMapper.queryBlogInfoById",id);一句即可获取到复杂的blogInfo对象。
嵌套语句查询的原理:
在上面的代码中,Mybatis会执行以下流程:
先执行 queryBlogInfoById 对应的语句从Blog表里获取到ResultSet结果集;
取出ResultSet下一条有效记录,然后根据resultMap定义的映射规格,通过这条记录的数据来构建对应的一个BlogInfo 对象。
当要对BlogInfo中的author属性进行赋值的时候,发现有一个关联的查询,此时Mybatis会先执行这个select查询语句,得到返回的结果,将结果设置到BlogInfo的author属性上;
对BlogInfo的posts进行赋值时,也有上述类似的过程。
重复2步骤,直至ResultSet. next () == false;
以下是blogInfo对象构造赋值过程示意图:
这种关联的嵌套查询,有一个非常好的作用就是:可以重用select语句,通过简单的select语句之间的组合来构造复杂的对象
。上面嵌套的两个select语句com.foo.bean.AuthorMapper.selectByPrimaryKey和com.foo.bean.PostMapper.selectByBlogId完全可以独立使用。
N+1问题:
它的弊端也比较明显:即所谓的N+1问题。关联的嵌套查询显示得到一个结果集,然后根据这个结果集的每一条记录进行关联查询。
现在假设嵌套查询就一个(即resultMap 内部就一个association标签),现查询的结果集返回条数为N,那么关联查询语句将会被执行N次,加上自身返回结果集查询1次,共需要访问数据库N+1次。如果N比较大的话,这样的数据库访问消耗是非常大的!所以使用这种嵌套语句查询的使用者一定要考虑慎重考虑,确保N值不会很大。
以上面的例子为例,select 语句本身会返回com.foo.bean.BlogMapper.queryBlogInfoById 条数为1 的结果集,由于它有两条关联的语句查询,它需要共访问数据库 1*(1+1)=3次数据库。
##10.2 嵌套结果查询## 嵌套语句的查询会导致数据库访问次数不定,进而有可能影响到性能
。Mybatis还支持一种嵌套结果的查询:即对于一对多,多对多,多对一的情况的查询,Mybatis通过联合查询,将结果从数据库内一次性查出来
,然后根据其一对多,多对一,多对多的关系和ResultMap中的配置,进行结果的转换,构建需要的对象。
重新定义BlogInfo的结果映射 resultMap:
对应的sql语句如下:
/*
* 获取所有Blog的所有信息
*/
public static BlogInfo nestedResultOnTest()
{
SqlSession session = sqlSessionFactory.openSession();
BlogInfo blogInfo = new BlogInfo();
blogInfo = (BlogInfo)session.selectOne("com.foo.bean.BlogMapper.queryAllBlogInfo");
JSONObject object = new JSONObject(blogInfo);
System.out.println(object.toString());
return blogInfo;
}
嵌套结果查询的执行步骤:
根据表的对应关系,进行join操作,获取到结果集;
根据结果集的信息和BlogInfo 的resultMap定义信息,对返回的结果集在内存中进行组装、赋值,构造BlogInfo;
返回构造出来的结果List
结果。
对于关联的结果查询,如果是多对一的关系
,则通过形如
如果是一对多的关系,就如Blog和Post之间的关系
,通过形如
对于关联结果的查询,只需要查询数据库一次,然后对结果的整合和组装全部放在了内存中。
#11 MyBatis一级缓存实现# ##11.1 什么是一级缓存? 为什么使用一级缓存?## 每当我们使用MyBatis开启一次和数据库的会话,MyBatis会创建出一个SqlSession对象表示一次数据库会话
。
在对数据库的一次会话中,我们有可能会反复地执行完全相同的查询语句,如果不采取一些措施的话,每一次查询都会查询一次数据库,而我们在极短的时间内做了完全相同的查询,那么它们的结果极有可能完全相同,由于查询一次数据库的代价很大,这有可能造成很大的资源浪费。
为了解决这一问题,减少资源的浪费,MyBatis会在表示会话的SqlSession对象中建立一个简单的缓存,将每次查询到的结果结果缓存起来,当下次查询的时候,如果判断先前有个完全一样的查询,会直接从缓存中直接将结果取出,返回给用户,不需要再进行一次数据库查询了。
如下图所示,MyBatis会在一次会话的表示----一个SqlSession对象中创建一个本地缓存(local cache),对于每一次查询,都会尝试根据查询的条件去本地缓存中查找是否在缓存中,如果在缓存中,就直接从缓存中取出,然后返回给用户;否则,从数据库读取数据,将查询结果存入缓存并返回给用户
。
对于会话(Session)级别的数据缓存,我们称之为一级数据缓存,简称一级缓存。
##11.2 MyBatis中的一级缓存是怎样组织的?(即SqlSession中的缓存是怎样组织的?)## 由于MyBatis使用SqlSession对象表示一次数据库的会话,那么,对于会话级别的一级缓存也应该是在SqlSession中控制的
。
实际上, MyBatis只是一个MyBatis对外的接口,SqlSession将它的工作交给了Executor执行器这个角色来完成,负责完成对数据库的各种操作
。当创建了一个SqlSession对象时,MyBatis会为这个SqlSession对象创建一个新的Executor执行器,而缓存信息就被维护在这个Executor执行器中
,MyBatis将缓存和对缓存相关的操作封装成了Cache接口中。SqlSession、Executor、Cache
之间的关系如下列类图所示:
如上述的类图所示,Executor接口的实现类BaseExecutor中拥有一个Cache接口的实现类PerpetualCache,则对于BaseExecutor对象而言,它将使用PerpetualCache对象维护缓存
。
综上,SqlSession对象、Executor对象、Cache对象
之间的关系如下图所示:
由于Session级别的一级缓存实际上就是使用PerpetualCache维护的,那么PerpetualCache是怎样实现的呢?
PerpetualCache实现原理其实很简单,其内部就是通过一个简单的HashMap
。如下是PerpetualCache的实现代码:
package org.apache.ibatis.cache.impl;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.locks.ReadWriteLock;
import org.apache.ibatis.cache.Cache;
import org.apache.ibatis.cache.CacheException;
/**
* 使用简单的HashMap来维护缓存
* @author Clinton Begin
*/
public class PerpetualCache implements Cache {
private String id;
private Map cache = new HashMap();
public PerpetualCache(String id) {
this.id = id;
}
public String getId() {
return id;
}
public int getSize() {
return cache.size();
}
public void putObject(Object key, Object value) {
cache.put(key, value);
}
public Object getObject(Object key) {
return cache.get(key);
}
public Object removeObject(Object key) {
return cache.remove(key);
}
public void clear() {
cache.clear();
}
public ReadWriteLock getReadWriteLock() {
return null;
}
public boolean equals(Object o) {
if (getId() == null) throw new CacheException("Cache instances require an ID.");
if (this == o) return true;
if (!(o instanceof Cache)) return false;
Cache otherCache = (Cache) o;
return getId().equals(otherCache.getId());
}
public int hashCode() {
if (getId() == null) throw new CacheException("Cache instances require an ID.");
return getId().hashCode();
}
}
##11.3 一级缓存的生命周期有多长?##
MyBatis在开启一个数据库会话时,会创建一个新的SqlSession对象,SqlSession对象中会有一个新的Executor对象,Executor对象中持有一个新的PerpetualCache对象;当会话结束时,SqlSession对象及其内部的Executor对象还有PerpetualCache对象也一并释放掉
。
如果SqlSession调用了close()方法
,会释放掉一级缓存PerpetualCache对象,一级缓存将不可用;
如果SqlSession调用了clearCache()
,会清空PerpetualCache对象中的数据,但是该对象仍可使用;
SqlSession中执行了任何一个update操作(update()、delete()、insert())
,都会清空PerpetualCache对象的数据,但是该对象可以继续使用
;
##11.4 SqlSession 一级缓存的工作流程##
根据statementId,params,rowBounds来构建一个key值
,根据这个key值去缓存Cache中取出对应的key值存储的缓存结果;##11.5 Cache接口的设计以及CacheKey的定义## 如下图所示,MyBatis定义了一个org.apache.ibatis.cache.Cache接口作为其Cache提供者的SPI(Service Provider Interface)
,所有的MyBatis内部的Cache缓存,都应该实现这一接口
。MyBatis定义了一个PerpetualCache实现类实现了Cache接口,实际上,在SqlSession对象里的Executor对象内维护的Cache类型实例对象,就是PerpetualCache子类创建的
。
(MyBatis内部还有很多Cache接口的实现,一级缓存只会涉及到这一个PerpetualCache子类,Cache的其他实现将会放到二级缓存中介绍)。
我们知道,Cache最核心的实现其实就是一个Map,将本次查询使用的特征值作为key,将查询结果作为value存储到Map中。现在最核心的问题出现了:怎样来确定一次查询的特征值?
换句话说就是:怎样判断某两次查询是完全相同的查询?
也可以这样说:如何确定Cache中的key值?
MyBatis认为,对于两次查询,如果以下条件都完全一样,那么就认为它们是完全相同的两次查询:
传入的 statementId
查询时要求的结果集中的结果范围 (结果的范围通过rowBounds.offset和rowBounds.limit表示)
这次查询所产生的最终要传递给JDBC java.sql.Preparedstatement的Sql语句字符串(boundSql.getSql() )
传递给java.sql.Statement要设置的参数值
现在分别解释上述四个条件:
传入的statementId,对于MyBatis而言,你要使用它,必须需要一个statementId,它代表着你将执行什么样的Sql
;
MyBatis自身提供的分页功能是通过RowBounds来实现的,它通过rowBounds.offset和rowBounds.limit来过滤查询出来的结果集,这种分页功能是基于查询结果的再过滤,而不是进行数据库的物理分页;
由于MyBatis底层还是依赖于JDBC实现的,那么,对于两次完全一模一样的查询,MyBatis要保证对于底层JDBC而言,也是完全一致的查询才行。而对于JDBC而言,两次查询,只要传入给JDBC的SQL语句完全一致,传入的参数也完全一致,就认为是两次查询是完全一致的。
上述的第3个条件正是要求保证传递给JDBC的SQL语句完全一致;第4条则是保证传递给JDBC的参数也完全一致;即3、4两条MyBatis最本质的要求就是:调用JDBC的时候,传入的SQL语句要完全相同,传递给JDBC的参数值也要完全相同
。
综上所述,CacheKey由以下条件决定:statementId + rowBounds + 传递给JDBC的SQL + 传递给JDBC的参数值
;
对于每次的查询请求,Executor都会根据传递的参数信息以及动态生成的SQL语句,将上面的条件根据一定的计算规则,创建一个对应的CacheKey对象。
我们知道创建CacheKey的目的,就两个:
根据CacheKey作为key,去Cache缓存中查找缓存结果;
如果查找缓存命中失败,则通过此CacheKey作为key,将从数据库查询到的结果作为value,组成key,value对存储到Cache缓存中;
CacheKey的构建被放置到了Executor接口的实现类BaseExecutor中,定义如下:
/**
* 所属类: org.apache.ibatis.executor.BaseExecutor
* 功能 : 根据传入信息构建CacheKey
*/
public CacheKey createCacheKey(MappedStatement ms, Object parameterObject, RowBounds rowBounds, BoundSql boundSql) {
if (closed) throw new ExecutorException("Executor was closed.");
CacheKey cacheKey = new CacheKey();
//1.statementId
cacheKey.update(ms.getId());
//2. rowBounds.offset
cacheKey.update(rowBounds.getOffset());
//3. rowBounds.limit
cacheKey.update(rowBounds.getLimit());
//4. SQL语句
cacheKey.update(boundSql.getSql());
//5. 将每一个要传递给JDBC的参数值也更新到CacheKey中
List parameterMappings = boundSql.getParameterMappings();
TypeHandlerRegistry typeHandlerRegistry = ms.getConfiguration().getTypeHandlerRegistry();
for (int i = 0; i < parameterMappings.size(); i++) { // mimic DefaultParameterHandler logic
ParameterMapping parameterMapping = parameterMappings.get(i);
if (parameterMapping.getMode() != ParameterMode.OUT) {
Object value;
String propertyName = parameterMapping.getProperty();
if (boundSql.hasAdditionalParameter(propertyName)) {
value = boundSql.getAdditionalParameter(propertyName);
} else if (parameterObject == null) {
value = null;
} else if (typeHandlerRegistry.hasTypeHandler(parameterObject.getClass())) {
value = parameterObject;
} else {
MetaObject metaObject = configuration.newMetaObject(parameterObject);
value = metaObject.getValue(propertyName);
}
//将每一个要传递给JDBC的参数值也更新到CacheKey中
cacheKey.update(value);
}
}
return cacheKey;
}
刚才已经提到,Cache接口的实现,本质上是使用的HashMap而HashMap是通过key值的hashcode 来组织和存储的,那么,构建CacheKey的过程实际上就是构造其hashCode的过程
。下面的代码就是CacheKey的核心hashcode生成算法,感兴趣的话可以看一下:
public void update(Object object) {
if (object != null && object.getClass().isArray()) {
int length = Array.getLength(object);
for (int i = 0; i < length; i++) {
Object element = Array.get(object, i);
doUpdate(element);
}
} else {
doUpdate(object);
}
}
private void doUpdate(Object object) {
//1. 得到对象的hashcode;
int baseHashCode = object == null ? 1 : object.hashCode();
//对象计数递增
count++;
checksum += baseHashCode;
//2. 对象的hashcode 扩大count倍
baseHashCode *= count;
//3. hashCode * 拓展因子(默认37)+拓展扩大后的对象hashCode值
hashcode = multiplier * hashcode + baseHashCode;
updateList.add(object);
}
MyBatis认为的完全相同的查询,不是指使用sqlSession查询时传递给算起来Session的所有参数值完完全全相同,你只要保证statementId,rowBounds,最后生成的SQL语句,以及这个SQL语句所需要的参数完全一致就可以了。
##11.6 一级缓存的性能分析##
读者有可能就觉得不妥了:如果我一直使用某一个SqlSession对象查询数据,这样会不会导致HashMap太大,而导致 java.lang.OutOfMemoryError错误啊?
读者这么考虑也不无道理,不过MyBatis的确是这样设计的。
MyBatis这样设计也有它自己的理由:
a. 一般而言SqlSession的生存时间很短。一般情况下使用一个SqlSession对象执行的操作不会太多,执行完就会消亡;
b. 对于某一个SqlSession对象而言,只要执行update操作(update、insert、delete),都会将这个SqlSession对象中对应的一级缓存清空掉,所以一般情况下不会出现缓存过大,影响JVM内存空间的问题;
c. 可以手动地释放掉SqlSession对象中的缓存。
MyBatis的一级缓存就是使用了简单的HashMap,MyBatis只负责将查询数据库的结果存储到缓存中去, 不会去判断缓存存放的时间是否过长、是否过期,因此也就没有对缓存的结果进行更新这一说了。
根据一级缓存的特性,在使用的过程中,我认为应该注意:
对于数据变化频率很大,并且需要高时效准确性的数据要求,我们使用SqlSession查询的时候,要控制好SqlSession的生存时间,SqlSession的生存时间越长,它其中缓存的数据有可能就越旧,从而造成和真实数据库的误差;同时对于这种情况,用户也可以手动地适时清空SqlSession中的缓存;
对于只执行、并且频繁执行大范围的select操作的SqlSession对象,SqlSession对象的生存时间不应过长。
#12 MyBatis二级缓存实现# MyBatis的二级缓存是Application级别的缓存
,它可以提高对数据库查询的效率,以提高应用的性能。 ##12.1 MyBatis的缓存机制整体设计以及二级缓存的工作模式##
如上图所示,当开一个会话时,一个SqlSession对象会使用一个Executor对象来完成会话操作,MyBatis的二级缓存机制的关键就是对这个Executor对象做文章
。如果用户配置了"cacheEnabled=true"
,那么MyBatis在为SqlSession对象创建Executor对象时,会对Executor对象加上一个装饰者:CachingExecutor
,这时SqlSession使用CachingExecutor对象来完成操作请求。CachingExecutor对于查询请求,会先判断该查询请求在Application级别的二级缓存中是否有缓存结果
,如果有查询结果,则直接返回缓存结果;如果缓存中没有,再交给真正的Executor对象来完成查询操作,之后CachingExecutor会将真正Executor返回的查询结果放置到缓存中
,然后在返回给用户。
CachingExecutor是Executor的装饰者,以增强Executor的功能,使其具有缓存查询的功能,这里用到了设计模式中的装饰者模式
,CachingExecutor和Executor的接口的关系如下类图所示:
##12.2 MyBatis二级缓存的划分## MyBatis并不是简单地对整个Application就只有一个Cache缓存对象,它将缓存划分的更细,即是Mapper级别的,即每一个Mapper都可以拥有一个Cache对象,具体如下:
MyBatis将Application级别的二级缓存细分到Mapper级别
,即对于每一个Mapper.xml,如果在其中使用了
注:上述的每一个Cache对象,都会有一个自己所属的namespace命名空间,并且会将Mapper的 namespace作为它们的ID;
如果你想让多个Mapper公用一个Cache的话,你可以使用
##12.3 使用二级缓存,必须要具备的条件## MyBatis对二级缓存的支持粒度很细,它会指定某一条查询语句是否使用二级缓存
。
虽然在Mapper中配置了这并不表示我们使用Mapper中定义的查询语句查到的结果都会放置到Cache对象之中
,我们必须指定Mapper中的某条选择语句是否支持缓存,即如下所示,在
,否则,不会对此Select查询,不会经过Cache缓存。如下所示,Select语句配置了useCache="true",则表明这条Select语句的查询会使用二级缓存。
总之,要想使某条Select查询支持二级缓存,你需要保证:
MyBatis支持二级缓存的总开关:全局配置变量参数 cacheEnabled=true
该select语句所在的Mapper,配置了
或 节点,并且有效 该select语句的参数 useCache=true
##12.4 一级缓存和二级缓存的使用顺序## 请注意,如果你的MyBatis使用了二级缓存,并且你的Mapper和select语句也配置使用了二级缓存,那么在执行select查询的时候,MyBatis会先从二级缓存中取输入,其次才是一级缓存,即MyBatis查询数据的顺序是:二级缓存 ———> 一级缓存 ——> 数据库
。
##12.5 二级缓存实现的选择## MyBatis对二级缓存的设计非常灵活,它自己内部实现了一系列的Cache缓存实现类,并提供了各种缓存刷新策略如LRU,FIFO等等
;另外,MyBatis还允许用户自定义Cache接口实现,用户是需要实现org.apache.ibatis.cache.Cache接口,然后将Cache实现类配置在
MyBatis自身提供的缓存实现;
用户自定义的Cache接口实现;
跟第三方内存缓存库的集成;
##12.6 MyBatis自身提供的二级缓存的实现## MyBatis自身提供了丰富的,并且功能强大的二级缓存的实现,它拥有一系列的Cache接口装饰者,可以满足各种对缓存操作和更新的策略。
MyBatis定义了大量的Cache的装饰器来增强Cache缓存的功能,如下类图所示。
对于每个Cache而言,都有一个容量限制,MyBatis各供了各种策略来对Cache缓存的容量进行控制,以及对Cache中的数据进行刷新和置换。MyBatis主要提供了以下几个刷新和置换策略:
LRU:(Least Recently Used),最近最少使用算法,即如果缓存中容量已经满了,会将缓存中最近最少被使用的缓存记录清除掉,然后添加新的记录;
FIFO:(First in first out),先进先出算法,如果缓存中的容量已经满了,那么会将最先进入缓存中的数据清除掉;
Scheduled:指定时间间隔清空算法,该算法会以指定的某一个时间间隔将Cache缓存中的数据清空;
#13 如何细粒度地控制你的MyBatis二级缓存# ##13.1 一个关于MyBatis的二级缓存的实际问题## 现有AMapper.xml中定义了对数据库表 ATable 的CRUD操作,BMapper定义了对数据库表BTable的CRUD操作;
假设 MyBatis 的二级缓存开启,并且 AMapper 中使用了二级缓存,AMapper对应的二级缓存为ACache;
除此之外,AMapper 中还定义了一个跟BTable有关的查询语句,类似如下所述:
执行以下操作:
好,问题就出现在第3步上:
由于AMapper的“selectATableWithJoin” 对应的SQL语句需要和BTable进行join查找,而在第 2 步BTable的数据已经更新了,但是第 3 步查询的值是第 1 步的缓存值,已经极有可能跟真实数据库结果不一样,即ACache中缓存数据过期了!
总结来看,就是:
对于某些使用了 join连接的查询,如果其关联的表数据发生了更新,join连接的查询由于先前缓存的原因,导致查询结果和真实数据不同步;
从MyBatis的角度来看,这个问题可以这样表述:
对于某些表执行了更新(update、delete、insert)操作后,如何去清空跟这些表有关联的查询语句所造成的缓存;
MyBatis二级缓存的一个重要特点:即松散的Cache缓存管理和维护
一个Mapper中定义的增删改查操作只能影响到自己关联的Cache对象
。如上图所示的Mapper namespace1中定义的若干CRUD语句,产生的缓存只会被放置到相应关联的Cache1中,即Mapper namespace2,namespace3,namespace4 中的CRUD的语句不会影响到Cache1。
可以看出,Mapper之间的缓存关系比较松散,相互关联的程度比较弱。
现在再回到上面描述的问题,如果我们将AMapper和BMapper共用一个Cache对象
,那么,当BMapper执行更新操作时,可以清空对应Cache中的所有的缓存数据,这样的话,数据不是也可以保持最新吗?
确实这个也是一种解决方案,不过,它会使缓存的使用效率变的很低!
AMapper和BMapper的任意的更新操作都会将共用的Cache清空,会频繁地清空Cache,导致Cache实际的命中率和使用率就变得很低了,所以这种策略实际情况下是不可取的。
最理想的解决方案就是:
**对于某些表执行了更新(update、delete、insert)操作后,如何去清空跟这些表有关联的查询语句所造成的缓存;**这样,就是以很细的粒度管理MyBatis内部的缓存,使得缓存的使用率和准确率都能大大地提升。
##13.3 mybatis-enhanced-cache插件的设计和工作原理## 该插件主要由两个构件组成:EnhancedCachingExecutor和EnhancedCachingManager
。源码地址:https://github.com/LuanLouis/mybatis-enhanced-cache。
EnhancedCachingExecutor是针对于Executor的拦截器,拦截Executor的几个关键的方法;EnhancedCachingExecutor主要做以下几件事:
每当有Executor执行query操作时, 1.1 记录下该查询StatementId和CacheKey,然后将其添加到EnhancedCachingManager中; 1.2 记录下该查询StatementId和此StatementId所属Mapper内的Cache缓存对象引用,添加到EnhancedCachingManager中;
每当Executor执行了update操作时,将此update操作的StatementId传递给EnhancedCachingManager,让EnhancedCachingManager根据此update的StatementId的配置,去清空指定的查询语句所产生的缓存;
另一个构件:EnhancedCachingManager,它也是本插件的核心,它维护着以下几样东西:
整个MyBatis的所有查询所产生的CacheKey集合(以statementId分类);
所有的使用过了的查询的statementId 及其对应的Cache缓存对象的引用;
update类型的StatementId和查询StatementId集合的映射,用于当Update类型的语句执行时,根据此映射决定应该清空哪些查询语句产生的缓存;
如下图所示:
原理很简单,就是 当执行了某个update操作时,根据配置信息去清空指定的查询语句在Cache中所产生的缓存数据。
##13.4 mybatis-enhanced-cache 插件的使用实例##
其中,
如上的配置,则说明,如果"com.louis.mybatis.dao.DepartmentsMapper.updateByPrimaryKey" 更新语句执行后,由 “com.louis.mybatis.dao.EmployeesMapper.selectWithDepartments” 语句所产生的放置在Cache缓存中的数据都都会被清空。
DEPARTMENT_ID, DEPARTMENT_NAME, MANAGER_ID, LOCATION_ID
update HR.DEPARTMENTS
set DEPARTMENT_NAME = #{departmentName,jdbcType=VARCHAR},
MANAGER_ID = #{managerId,jdbcType=DECIMAL},
LOCATION_ID = #{locationId,jdbcType=DECIMAL}
where DEPARTMENT_ID = #{departmentId,jdbcType=DECIMAL}
EMPLOYEE_ID, FIRST_NAME, LAST_NAME, EMAIL, PHONE_NUMBER, HIRE_DATE, JOB_ID, SALARY,
COMMISSION_PCT, MANAGER_ID, DEPARTMENT_ID
结果分析:
从上述的结果可以看出,前四次执行了“com.louis.mybatis.dao.EmployeesMapper.selectWithDepartments”语句,EmployeesMapper对应的Cache缓存中存储的结果缓存有1个增加到4个。
当执行了"com.louis.mybatis.dao.DepartmentsMapper.updateByPrimaryKey"后,EmployeeMapper对应的缓存Cache结果被清空了,即"com.louis.mybatis.dao.DepartmentsMapper.updateByPrimaryKey"更新语句引起了EmployeeMapper中的"com.louis.mybatis.dao.EmployeesMapper.selectWithDepartments"缓存的清空。