'''
>- ** 本文为[365天深度学习训练营](https://mp.weixin.qq.com/s/xLjALoOD8HPZcH563En8bQ) 中的学习记录博客**
>- ** 参考文章地址: [深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天](https://mtyjkh.blog.csdn.net/article/details/116978213)**
>- ** 作者:[K同学啊](https://mp.weixin.qq.com/s/k-vYaC8l7uxX51WoypLkTw)**
'''
一、设置GPU
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
gpu0 = gpus[0]
tf.config.experimental.set_memory_growth(gpu0, True)
tf.config.set_visible_devices([gpu0],"GPU")
二、导入数据
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
三、归一化
train_images, test_images = train_images / 255.0, test_images / 255.0
train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
四、可视化
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer','dog', 'frog', 'horse', 'ship', 'truck']
plt.figure(figsize=(20,10))
for i in range(20):
plt.subplot(5,10,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i], cmap=plt.cm.binary)
plt.xlabel(class_names[train_labels[i][0]])
plt.show()
五、构建CNN网络模型
model = models.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.Flatten(),
layers.Dense(64, activation='relu'),
layers.Dense(10)
])
model.summary()
六、编译
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
七、训练模型
history = model.fit(train_images, train_labels, epochs=20,
validation_data=(test_images, test_labels))
八、预测
plt.imshow(test_images[1])
plt.show()
import numpy as np
pre = model.predict(test_images)
print(class_names[np.argmax(pre[1])])
六、模型评估
import matplotlib.pyplot as plt
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.xlim([1,10])
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print(test_loss)
print(test_acc)
'''
本周总结:系统的学习了numpy和pandas两个常用的python包,进一步增强了对CNN网络模型的知识学习。
'''
Model: "sequential_9"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_27 (Conv2D) (None, 30, 30, 32) 896
_________________________________________________________________
max_pooling2d_18 (MaxPooling (None, 15, 15, 32) 0
_________________________________________________________________
conv2d_28 (Conv2D) (None, 13, 13, 64) 18496
_________________________________________________________________
max_pooling2d_19 (MaxPooling (None, 6, 6, 64) 0
_________________________________________________________________
conv2d_29 (Conv2D) (None, 4, 4, 64) 36928
_________________________________________________________________
flatten_9 (Flatten) (None, 1024) 0
_________________________________________________________________
dense_18 (Dense) (None, 64) 65600
_________________________________________________________________
dense_19 (Dense) (None, 10) 650
=================================================================
Total params: 122,570
Trainable params: 122,570
Non-trainable params: 0
_________________________________________________________________
Epoch 1/20
1563/1563 [==============================] - 4s 2ms/step - loss: 1.5139 - accuracy: 0.4447 - val_loss: 1.2358 - val_accuracy: 0.5594
Epoch 2/20
1563/1563 [==============================] - 4s 2ms/step - loss: 1.1406 - accuracy: 0.5949 - val_loss: 1.1123 - val_accuracy: 0.6068
Epoch 3/20
1563/1563 [==============================] - 4s 2ms/step - loss: 0.9933 - accuracy: 0.6517 - val_loss: 0.9888 - val_accuracy: 0.6535
Epoch 4/20
1563/1563 [==============================] - 4s 2ms/step - loss: 0.9027 - accuracy: 0.6844 - val_loss: 0.9425 - val_accuracy: 0.6750
Epoch 5/20
1563/1563 [==============================] - 4s 2ms/step - loss: 0.8337 - accuracy: 0.7084 - val_loss: 0.9264 - val_accuracy: 0.6761
Epoch 6/20
1563/1563 [==============================] - 4s 2ms/step - loss: 0.7778 - accuracy: 0.7256 - val_loss: 0.8938 - val_accuracy: 0.6907
Epoch 7/20
1563/1563 [==============================] - 4s 2ms/step - loss: 0.7331 - accuracy: 0.7438 - val_loss: 0.8992 - val_accuracy: 0.6943
Epoch 8/20
1563/1563 [==============================] - 4s 2ms/step - loss: 0.6886 - accuracy: 0.7566 - val_loss: 0.8590 - val_accuracy: 0.7110
Epoch 9/20
1563/1563 [==============================] - 4s 2ms/step - loss: 0.6501 - accuracy: 0.7709 - val_loss: 0.8859 - val_accuracy: 0.7042
Epoch 10/20
1563/1563 [==============================] - 4s 2ms/step - loss: 0.6169 - accuracy: 0.7828 - val_loss: 0.9051 - val_accuracy: 0.6995
Epoch 11/20
1563/1563 [==============================] - 4s 2ms/step - loss: 0.5813 - accuracy: 0.7955 - val_loss: 0.9340 - val_accuracy: 0.7049
Epoch 12/20
1563/1563 [==============================] - 4s 2ms/step - loss: 0.5424 - accuracy: 0.8054 - val_loss: 0.9041 - val_accuracy: 0.7076
Epoch 13/20
1563/1563 [==============================] - 4s 2ms/step - loss: 0.5181 - accuracy: 0.8174 - val_loss: 0.9279 - val_accuracy: 0.7073
Epoch 14/20
1563/1563 [==============================] - 4s 2ms/step - loss: 0.4881 - accuracy: 0.8260 - val_loss: 0.9906 - val_accuracy: 0.6906
Epoch 15/20
1563/1563 [==============================] - 4s 2ms/step - loss: 0.4626 - accuracy: 0.8351 - val_loss: 0.9769 - val_accuracy: 0.7097
Epoch 16/20
1563/1563 [==============================] - 4s 2ms/step - loss: 0.4346 - accuracy: 0.8453 - val_loss: 1.0018 - val_accuracy: 0.7071
Epoch 17/20
1563/1563 [==============================] - 4s 2ms/step - loss: 0.4097 - accuracy: 0.8523 - val_loss: 1.0650 - val_accuracy: 0.6973
Epoch 18/20
1563/1563 [==============================] - 4s 2ms/step - loss: 0.3893 - accuracy: 0.8595 - val_loss: 1.0354 - val_accuracy: 0.7049
Epoch 19/20
1563/1563 [==============================] - 4s 2ms/step - loss: 0.3684 - accuracy: 0.8674 - val_loss: 1.1426 - val_accuracy: 0.6952
Epoch 20/20
1563/1563 [==============================] - 4s 2ms/step - loss: 0.3480 - accuracy: 0.8746 - val_loss: 1.1545 - val_accuracy: 0.7086
ship
313/313 - 0s - loss: 1.1545 - accuracy: 0.7086
1.1545066833496094
0.7085999846458435