【YOLO5Face】《YOLO5Face:Why Reinventing a Face Detector》

【YOLO5Face】《YOLO5Face:Why Reinventing a Face Detector》_第1张图片

arXiv-2021


文章目录

  • 1 Background and Motivation
  • 2 Related Work
  • 3 Advantages / Contributions
  • 4 Method
  • 5 Experiments
    • 5.1 Datasets
    • 5.2 Ablation Study
    • 5.3 YOLO5Face for Face Recognition
    • 5.4 YOLO5Face on WiderFace Dataset
    • 5.5 YOLO5Face on FDDB Dataset
  • 6 Conclusion(own) / Future work


1 Background and Motivation

人脸检测是非常基础的 CV 应用之一,作为人脸识别、验证、跟踪、对齐、表情分析等诸多任务的第一步,吸引了学术界和业界的许多研究和发展

作者 treat face detection as a general object detection task(face detection is just a sub task of general object detection),在 yolov5 目标检测的工程基础上,改进提出人脸检测器 YOLO5Face

2 Related Work

  • Object Detection

    • traditional
    • two-stage
    • one-stage
  • Face Detection
    解决 scale, pose, occlusion, expression, makeup, illumination, blur and etc 问题

  • YOLO

3 Advantages / Contributions

  • 设计 YOLO5Face 人脸检测器
  • 针对不用应用需求,提出不同大小的人脸检测器
  • 在 WiderFace 上评估,实现了 SOTA(validation)

4 Method

1)Network Architecture

【YOLO5Face】《YOLO5Face:Why Reinventing a Face Detector》_第2张图片
【YOLO5Face】《YOLO5Face:Why Reinventing a Face Detector》_第3张图片
相比于 yolov5 的改进

  • add a landmark regression head to the YOLOv5 network. 采用的是 Wing Loss
  • replace the Focus with a Stem block structure(图 1 的(d))
  • change the SPP block and use a smaller kernel(13x13-9x9-5x5 改成了 7x7-5x7-3x3)
  • add a P6 output block with stride of 64(增加大脸检出率)
  • 调增了 DA 策略,取消了上下翻转,Mosaic 和小目标兼容性不好,random cropping 效果不错
  • design two super light-weight models based on ShuffleNetV2(YOLOv5n / YOLOv5n-0.5)

2)Landmark Regression

L1 L2 和 smooth L1,these loss functions are not sensitive to small errors.

采用的 wing loss 对小 error 更敏感
【YOLO5Face】《YOLO5Face:Why Reinventing a Face Detector》_第4张图片
在这里插入图片描述
最终的 loss 由 objection loss 和 landmark loss 构成

5 Experiments

5.1 Datasets

  • WiderFace
    • contains 32,203 images and 393,703 faces
    • train/validation/test sets by ratio 50%/10%/40%
    • three levels of difficulty: Easy, Medium, and Hard.
  • FDDB
    • 5171 faces annotated in 2845 images.

5.2 Ablation Study

模型结构细节
【YOLO5Face】《YOLO5Face:Why Reinventing a Face Detector》_第5张图片
消融实验

【YOLO5Face】《YOLO5Face:Why Reinventing a Face Detector》_第6张图片

  • Stem Block vs. Focus Layer
  • SPP with Smaller Size Kernels
  • P6 Output Block
  • Data Augmentation
    • Mosaic helps the mAP in the Hard dataset.
    • the Mosaic has to work with the ignoring small faces, otherwise the performance degrades dramatically

5.3 YOLO5Face for Face Recognition

【YOLO5Face】《YOLO5Face:Why Reinventing a Face Detector》_第7张图片
关键点的对比,vs RetinaFace
【YOLO5Face】《YOLO5Face:Why Reinventing a Face Detector》_第8张图片
【YOLO5Face】《YOLO5Face:Why Reinventing a Face Detector》_第9张图片
大角度作者的方法会更准确一点

5.4 YOLO5Face on WiderFace Dataset

【YOLO5Face】《YOLO5Face:Why Reinventing a Face Detector》_第10张图片SCRFD 感觉好猛

看看 PR 曲线
【YOLO5Face】《YOLO5Face:Why Reinventing a Face Detector》_第11张图片
【YOLO5Face】《YOLO5Face:Why Reinventing a Face Detector》_第12张图片

validation dataset:YOLOv5x6-Face detector achieves 96.9%, 96.0%, 91.6% mAP on the Easy, Medium, and Hard subset(比SOTA 猛)

test dataset:YOLOv5x6-Face detector achieves 95.8%, 94.9%, 90.5% mAP on the Easy, Medium, and Hard subset(没 SOTA猛)

we only use multiple scales and left-right flipping without using other test-time augmentation (TTA) methods.

5.5 YOLO5Face on FDDB Dataset

【YOLO5Face】《YOLO5Face:Why Reinventing a Face Detector》_第13张图片

6 Conclusion(own) / Future work

  • VGA resolution input images

【YOLO5Face】《YOLO5Face:Why Reinventing a Face Detector》_第14张图片

你可能感兴趣的:(CNN,目标检测,计算机视觉,深度学习)