TensorRT+Yolov7x:基于TensorRT+API部署YoloV7x模型

 美团刚刚发出yolov6,AB大神就带着yolov7来了。。。。。这速度是真快。。

在 5-160 FPS 范围内速度和精度超过所有已知目标检测器。

在 后不到两个星期,提出 YOLOv4 的团队就发布了更新一代的版本。

YOLOv7 的论文被提交到了预印版论文平台 arXiv 上,其三位作者 Chien-Yao Wang、Alexey Bochkovskiy 和 Hong-Yuan Mark Liao 是 YOLOv4 的原班人马。

相对于其他类型的工具,YOLOv7-E6 目标检测器(56 FPS V100,55.9% AP)比基于 transformer 的检测器 SWINL Cascade-Mask R-CNN(9.2 FPS A100,53.9% AP)速度上高出 509%,精度高出 2%,比基于卷积的检测器 ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) 速度高出 551%,精度高出 0.7%。

此外, YOLOv7 的在速度和精度上的表现也优于 YOLOR、YOLOX、Scaled-YOLOv4、YOLOv5、DETR 等多种目标检测器。

TensorRT+Yolov7x:基于TensorRT+API部署YoloV7x模型_第1张图片

github网址:

你可能感兴趣的:(TensorRT+深度学习,深度学习,人工智能,TensorRT)