《MATLAB智能算法30个案例》:第23章 基于蚁群算法的二维路径规划算法

《MATLAB智能算法30个案例》:第23章 基于蚁群算法的二维路径规划算法

  • 1. 前言
  • 2. MATLAB 仿真示例
  • 3. 小结

1. 前言

《MATLAB智能算法30个案例分析》是2011年7月1日由北京航空航天大学出版社出版的图书,作者是郁磊、史峰、王辉、胡斐。本书案例是各位作者多年从事算法研究的经验总结。书中所有案例均因国内各大MATLAB技术论坛网友的切身需求而精心设计,其中不少案例所涉及的内容和求解方法在国内现已出版的MATLAB书籍中鲜有介绍。《MATLAB智能算法30个案例分析》采用案例形式,以智能算法为主线,讲解了遗传算法、免疫算法、退火算法、粒子群算法、鱼群算法、蚁群算法和神经网络算法等最常用的智能算法的MATLAB实现。

本书共给出30个案例,每个案例都是一个使用智能算法解决问题的具体实例,所有案例均由理论讲解、案例背景、MATLAB程序实现和扩展阅读四个部分组成,并配有完整的原创程序,使读者在掌握算法的同时更能快速提高使用算法求解实际问题的能力。《MATLAB智能算法30个案例分析》可作为本科毕业设计、研究生项目设计、博士低年级课题设计参考书籍,同时对广大科研人员也有很高的参考价值。

《MATLAB智能算法30个案例分析》与《MATLAB 神经网络43个案例分析》一样,都是由北京航空航天大学出版社出版,其中的智能算法应该是属于神经网络兴起之前的智能预测分类算法的热门领域,在数字信号处理,如图像和语音相关方面应用较为广泛。本系列文章结合MATLAB与实际案例进行仿真复现,有不少自己在研究生期间与工作后的学习中有过相关学习应用,这次复现仿真示例进行学习,希望可以温故知新,加强并提升自己在智能算法方面的理解与实践。下面开始进行仿真示例,主要以介绍各章节中源码应用示例为主,本文主要基于MATLAB2015b(32位)平台仿真实现,这是本书第二十三章基于蚁群算法的二维路径规划算法实例,话不多说,开始!

2. MATLAB 仿真示例

打开MATLAB,点击“主页”,点击“打开”,找到示例文件
《MATLAB智能算法30个案例》:第23章 基于蚁群算法的二维路径规划算法_第1张图片
选中main.m,点击“打开”,main.m源码如下:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%功能:基于蚁群算法的二维路径规划算法示例
%环境:Win7,Matlab2015b
%Modi: C.S
%时间:2022-07-09
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 清空环境
clc
clear all
close all

tic
%% 障碍物数据
position = load('barrier.txt');
plot([0,200],[0,200],'.');
hold on
B = load('barrier.txt');
xlabel('km','fontsize',12)
ylabel('km','fontsize',12)
title('二维规划空间','fontsize',12)
%% 描述起点和终点
S = [20,180];
T = [160,90];
plot([S(1),T(1)],[S(2),T(2)],'.');

% 图形标注
text(S(1)+2,S(2),'S');
text(T(1)+2,T(2),'T');
 
%% 描绘障碍物图形
fill(position(1:4,1),position(1:4,2),[0,0,0]);
fill(position(5:8,1),position(5:8,2),[0,0,0]);
fill(position(9:12,1),position(9:12,2),[0,0,0]);
fill(position(13:15,1),position(13:15,2),[0,0,0]);

% 下载链路端点数据
L = load('lines.txt');
 
%% 描绘线及中点
v = zeros(size(L));
for i=1:20
    plot([position(L(i,1),1),position(L(i,2),1)],[position(L(i,1),2)...
        ,position(L(i,2),2)],'color','black','LineStyle','--');
    v(i,:) = (position(L(i,1),:)+position(L(i,2),:))/2;
    plot(v(i,1),v(i,2),'*');
    text(v(i,1)+2,v(i,2),strcat('v',num2str(i)));
end
 
%% 描绘可行路径
sign = load('matrix.txt');
[n,m]=size(sign);
 
for i=1:n
    
    if i == 1
        for k=1:m-1
            if sign(i,k) == 1
                plot([S(1),v(k-1,1)],[S(2),v(k-1,2)],'color',...
                    'black','Linewidth',2,'LineStyle','-');
            end
        end
        continue;
    end
    
    for j=2:i
        if i == m
            if sign(i,j) == 1
                plot([T(1),v(j-1,1)],[T(2),v(j-1,2)],'color',...
                    'black','Linewidth',2,'LineStyle','-');
            end
        else
            if sign(i,j) == 1
                plot([v(i-1,1),v(j-1,1)],[v(i-1,2),v(j-1,2)],...
                    'color','black','Linewidth',2,'LineStyle','-');
            end
        end
    end
end
path = DijkstraPlan(position,sign);
j = path(22);
plot([T(1),v(j-1,1)],[T(2),v(j-1,2)],'color','yellow','LineWidth',3,'LineStyle','-.');
i = path(22);
j = path(i);
count = 0;
while true
    plot([v(i-1,1),v(j-1,1)],[v(i-1,2),v(j-1,2)],'color','yellow','LineWidth',3,'LineStyle','-.');
    count = count + 1;
    i = j;
    j = path(i);
    if i == 1 || j==1
        break;
    end
end
plot([S(1),v(i-1,1)],[S(2),v(i-1,2)],'color','yellow','LineWidth',3,'LineStyle','-.');


count = count+3;
pathtemp(count) = 22;
j = 22;
for i=2:count
    pathtemp(count-i+1) = path(j);
    j = path(j);
end
path = pathtemp;
path = [1     9     8     7    13    14    12    22];

%% 蚁群算法参数初始化
pathCount = length(path)-2;          %经过线段数量
pheCacuPara=2;                       %信息素计算参数
pheThres = 0.8;                      %信息素选择阈值
pheUpPara=[0.1 0.0003];              %信息素更新参数
qfz= zeros(pathCount,10);            %启发值

phePara = ones(pathCount,10)*pheUpPara(2);         %信息素
qfzPara1 = ones(10,1)*0.5;           %启发信息参数
qfzPara2 = 1.1;                      %启发信息参数
m=10;                                %种群数量
NC=500;                              %循环次数
pathk = zeros(pathCount,m);          %搜索结果记录
shortestpath = zeros(1,NC);          %进化过程记录
 
%% 初始最短路径
dijpathlen = 0;
vv = zeros(22,2);
vv(1,:) = S;
vv(22,:) = T;
vv(2:21,:) = v;
for i=1:pathCount-1
dijpathlen = dijpathlen + sqrt((vv(path(i),1)-vv(path(i+1),1))^2+(vv(path(i),2)-vv(path(i+1),2))^2);
end
LL = dijpathlen;
 
%% 经过的链接线
lines = zeros(pathCount,4);
for i = 1:pathCount
    lines(i,1:2) = B(L(path(i+1)-1,1),:);
    lines(i,3:4) = B(L(path(i+1)-1,2),:);
end
 
%% 循环搜索
for num = 1:NC
    
    %% 蚂蚁迭代寻优一次
    for i=1:pathCount
        for k=1:m
            q = rand();
            qfz(i,:) = (qfzPara2-abs((1:10)'/10-qfzPara1))/qfzPara2; %启发信息
            if q<=pheThres%选择信息素最大值
                arg = phePara(i,:).*(qfz(i,:).^pheCacuPara);
                j = find(arg == max(arg));
                pathk(i,k) = j(1);
            else  % 轮盘赌选择
                arg = phePara(i,:).*(qfz(i,:).^pheCacuPara);
                sumarg = sum(arg);
                qq = (q-pheThres)/(1-pheThres);
                qtemp = 0;
                j = 1;
                while qtemp < qq
                    qtemp = qtemp + (phePara(i,j)*(qfz(i,j)^pheCacuPara))/sumarg;
                    j=j+1;
                end
                j=j-1;
                pathk(i,k) = j(1);
            end
            % 信息素更新
            phePara(i,j) = (1-pheUpPara(1))*phePara(i,j)+pheUpPara(1)*pheUpPara(2);
        end
    end
    
    %% 计算路径长度
    len = zeros(1,k);
    for k=1:m
        Pstart = S;
        Pend = lines(1,1:2) + (lines(1,3:4)-lines(1,1:2))*pathk(1,k)/10;
        for l=1:pathCount
            len(1,k) = len(1,k)+sqrt(sum((Pend-Pstart).^2));
            Pstart = Pend;
            if l<pathCount
                Pend = lines(l+1,1:2) + (lines(l+1,3:4)-lines(l+1,1:2))*pathk(l+1,k)/10;
            end
        end
        Pend = T;
        len(1,k) = len(1,k)+sqrt(sum((Pend-Pstart).^2));
    end
    
    %% 更新信息素
    % 寻找最短路径
    minlen = min(len);
    minlen = minlen(1);
    minant = find(len == minlen);
    minant = minant(1);
    
    % 更新全局最短路径
    if minlen < LL
        LL = minlen;
    end
    
    % 更新信息素
    for i=1:pathCount
        phePara(i,pathk(i,minant)) = (1-pheUpPara(1))* phePara(i,pathk(i,minant))+pheUpPara(1)*(1/minlen);
    end
    shortestpath(num) = minlen;
end

figure;
plot(1:NC,shortestpath,'color','blue');
hold on
% plot(1:NC,dijpathlen,'color','red');
ylabel('路径总长度');
xlabel('迭代次数');
toc

添加完毕,点击“运行”,开始仿真,输出仿真结果如下:

《MATLAB智能算法30个案例》:第23章 基于蚁群算法的二维路径规划算法_第2张图片
《MATLAB智能算法30个案例》:第23章 基于蚁群算法的二维路径规划算法_第3张图片

3. 小结

路径规划算法是指在有障碍物的工作环境中寻找一条从起点到终点、无碰撞地绕过所有障碍物的运动路径。路径规划算法较多,大体上可分为全局路径规划算法和局部路径规划算法两大类。对本章内容感兴趣或者想充分学习了解的,建议去研习书中第二十三章节的内容。后期会对其中一些知识点在自己理解的基础上进行补充,欢迎大家一起学习交流。

你可能感兴趣的:(MATLAB智能算法30个案例,matlab,算法,开发语言,蚁群算法,二维路径规划)