- 使用flask快速搭建web应用
alex190824
flask前端pythonecharts
文章目录前言一、Flask是什么?二、使用步骤1.引入包2.简单的服务端应用程序3.添加用于显示折线图代码4.在templates目录下,创建用于渲染的line-simple.html页面5.完整的代码结构前端代码后端代码总结前言在数据处理分析过程中,有快速搭建数据展示的应用场景需求,此时可以使用Flask快速进行web应用环境构建。本示例演示创建web应用及显示渲染echart折线图。一、Fla
- 为什么要进行数据仓库分层?
BenBen尔
#建模方法spark大数据分布式
对数据仓库进行分层(如常见的ODS、DWD、DWS、ADS等层次)是为了解决复杂数据处理场景中的效率、可维护性、易用性问题。以下是分层的主要目的和优势:1、职责分离,逻辑解耦分层能够沉淀公共的数据模型,实现了逻辑解耦。有以下好处:减少重复开发,提升研发效率从数仓模型角度能够提升数据一致性。减少了冗余计算,高频查询或者高频开发无需使用原始数据,直接使用公共的数据模型查询或者开发即可,减少了对计算资源
- Dinky × Jiron:打造高效智能的数据处理平台
jiron开源
平台开发flink大数据hive数据仓库kafkaetl工程师clickhouse
Dinky×Jiron:打造高效智能的数据处理平台JironGitHub地址https://github.com/642933588/jiron-cloudhttps://gitee.com/642933588/jiron-cloud将基于ApacheFlink的实时计算平台Dinky成功集成至Jiron数据开发平台,以进一步增强平台的数据处理能力,提升数据处理效率与灵活性,同时优化用户体验并降低
- Java Stream 流从零到一全指南
秋.
JAVAwindowsjava开发语言流strem
1.什么是JavaStream?JavaStream是Java8引入的一种用于处理数据集合的API,提供了声明式的方式进行数据处理。它能够支持函数式编程风格,极大地简化了集合操作,提高了代码的可读性和可维护性。Stream的核心特性链式操作:流操作可以串联在一起,避免了传统迭代方式的冗余代码。惰性求值:只有在终端操作时,流的计算才会执行。内部迭代:相比于for循环的外部迭代,Stream采用内部迭
- PCL 点云OBB包围盒(二)
大鱼BIGFISH
点云进阶C++PCL点云OBB包围盒
文章目录一、简介二、实现步骤二、实现代码三、实现效果参考资料一、简介包围盒是一种求解离散点集最优包围空间的算法,基本思想是用体积稍大且特性简单的几何体(称为包围盒)来近似地代替复杂的几何对象。(来源于百度)常用的求解包围盒的算法主要有AABB和OOB算法,但AABB算法容易受到物体朝向的影响,产生较大的空隙,因此本文将以OOB算法思想实现最小包围盒的求取。包围盒的应用有很多,如机械上的碰撞测试、物
- 25年大数据开发省赛样题第一套,离线数据处理答案
Tometor
大数据sparkscala
省赛样题一,数据抽取模块这一模块的作用是从mysql抽取数据到ods层进行指标计算,在题目中要求进行全量抽取,并新增etl-date字段进行分区,日期为比赛前一天importorg.apache.spark.sql.SparkSessionimportjava.util.PropertiesobjectTask1{defmain(args:Array[String]):Unit={valspark
- 边缘计算(Edge Computing)
Dream Algorithm
边缘计算人工智能
边缘计算(EdgeComputing)是一种分布式计算范式,它将数据处理和存储功能从传统的集中式云端转移到靠近数据源的网络边缘设备(如路由器、网关、本地服务器或终端设备)。边缘计算的目标是减少数据传输延迟、降低带宽压力,并提高系统的实时性和可靠性。边缘计算的核心概念靠近数据源边缘计算将计算资源部署在靠近数据生成的地方,而不是将所有数据发送到远程云端处理。分布式架构边缘计算采用分布式架构,将计算任务
- AI 大模型应用数据中心的数据分析架构
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《AI大模型应用数据中心的数据分析架构》关键词:数据中心、AI大模型、数据分析、架构设计、应用实践摘要:本文深入探讨了AI大模型在数据中心数据分析架构中的应用,从数据中心背景、AI大模型架构与技术、数据处理与分析技术、AI大模型应用与实践等多个方面,全面解析了AI大模型如何助力数据中心实现高效数据分析和智能处理,为读者提供了系统的理论指导和实际案例分析。第一部分:数据中心背景与AI大模型概述第1章
- 网络安全运维手册
网安墨雨
web安全运维安全
1网络安全概述1.1定义信息安全:为数据处理系统建立和采用的技术和管理的安全保护,保护计算机硬件、软件和数据不因偶然和恶意的原因遭到破坏、更改和泄露。网络安全:防止未授权的用户访问信息防止未授权而试图破坏与修改信息1.2信息安全特性(CIA)可用性:确保授权用户在需要时可以访问信息并使用相关信息资产完整性:保护信息和信息的处理方法准确而完整机密性:确保只有经过授权的人才能访问信息1.3网络安全的威
- 从理论到实践:零拷贝技术的全面解读
超越不平凡
Java基础Java零拷贝
目录一、I/O工作方式1.1DMA二、零拷贝2.1传统数据拷贝2.2Java应用数据处理2.3.零拷贝流程三、零拷贝案例四、总结一、I/O工作方式磁盘可以说是计算机系统中最慢的硬件之一,读写速度相差内存10倍以上,所以针对磁盘的优化技术非常多。下面以文件传输为切入线分析I/O的工作方式。在没有DMA技术前,I/O是这样工作的,如下图:用户发起read调用,CPU将对应的指令给磁盘控制器,然后返回;
- KNN算法实例_手写识别系统
V文宝
机器学习算法
创建一个简单的书写识别系统,使用KNN算法来识别手写数字。分别使用手写KNN算法和调用scikit-learn库来实现。在数据处理过程中,将使用一个常见的手写数字数据集,如MNIST数据集。数据集我们将使用MNIST数据集,它包含60000个训练样本和10000个测试样本。每个样本是一个28x28像素的灰度图像,表示0-9之间的手写数字。手写KNN算法我们首先手写一个KNN算法来实现书写识别系统。
- DeepSeek选择方向的优势
AIWritePaper官方账号
DeepSeekAIWritePaperChatGPT人工智能deepseekAIWritePaper机器学习大数据
DeepSeek选择方向的优势在学术研究与论文发表的征程中,DeepSeek凭借其独特的优势,正逐渐成为研究者们不可或缺的得力助手。以下将从多个维度深入剖析DeepSeek选择方向的卓越之处。一、高效的数据处理能力DeepSeek能够迅速处理海量数据,自动识别数据模式,精准定位关键趋势与关联。这一能力使研究者无需耗费大量时间在数据的海洋中苦苦搜寻,从而为论文研究节省宝贵时间,显著提升研究效率。二、
- 数据处理与图形绘制的多领域应用案例,学会了你也是高手!
A达峰绮
经验分享数据处理图形绘制经典案例
一、引言在当今数字化时代,数据处理与图形绘制已成为各领域不可或缺的技术手段。从科学研究到商业分析,从工程设计到日常决策,海量的数据需要高效处理,而直观清晰的图形则能帮助人们迅速理解数据背后的信息。本教程将通过多个具体应用案例,涵盖多种编程语言,深入讲解数据处理与图形绘制的实践方法,助力学习者解决学习过程中的难题,提升相关技能。二、Python在数据处理与图形绘制中的应用(一)金融数据分析案例数据获
- 数据处理与图形绘制应用案例深度全面解析,值得收藏学习!
A达峰绮
经验分享大数据计算机学习资源
在当今数字化时代,数据犹如一座蕴含无限价值的宝藏,而数据处理和图形绘制则是开启这座宝藏的关键钥匙。数据处理能够对海量、复杂的数据进行清洗、转换和分析,挖掘出其中有价值的信息;图形绘制则可以将这些信息以直观、形象的图形展示出来,帮助人们更好地理解和决策。无论是在商业领域的市场分析、金融领域的风险评估,还是在科研领域的实验数据解读,数据处理和图形绘制都发挥着不可或缺的作用。本文将通过多个不同领域的应用
- 基于物联网的幼儿看护辅助系统设计方案
神经网络15044
算法网络物联网
以下是一个基于物联网的幼儿看护辅助系统设计方案,包含系统概述、系统架构、硬件设计、软件设计、通信协议、系统功能以及安全与隐私等方面。系统概述基于物联网的幼儿看护辅助系统旨在利用传感器、网络通信和数据处理技术,实时监测幼儿的状态和环境信息,为家长和看护人员提供远程监控和预警功能,提高幼儿看护的安全性和效率。系统架构该系统主要由感知层、网络层、平台层和应用层组成。感知层:包括各种传感器,如体温传感器、
- Python中很常用的100个函数整理
请为小H留灯
python中函数python开发语言
Python内置函数提供了强大的工具,涵盖数据处理、数学运算、迭代控制、类型转换等。本文总结了100个常用内置函数,并配备示例代码,提高编程效率。1.abs()取绝对值print(abs(-10)) #102.all()判断所有元素是否为真print(all([True,1,"hello"])) #Trueprint(all([True,0,"hello"])) #False3.any()判断任意
- 文本挖掘+情感分析+主题建模+K-Meas聚类+词频统计+词云(景区游客评论情感分析)
请为小H留灯
聚类机器学习支持向量机人工智能深度学习
本文通过情感分析技术对景区游客评论进行深入挖掘,结合数据预处理、情感分类和文本挖掘,分析游客评价与情感倾向。利用朴素贝叶斯和SVM等模型进行情感预测,探讨满意度与情感的关系。通过KMeans聚类和LDA主题分析,提取游客关心的话题,提供优化建议,为未来研究提供方向。1.引言1.1背景与目的1.2旅游业发展与游客评论的重要性2.数据处理与分析2.1数据加载与预处理2.2游客评分与点赞量分析3.评论内
- 大模型中的常用名词介绍八:【特征与数据处理、伦理与公平性等】【建议收藏】
神马行空
大模型人工智能深度学习计算机视觉神经网络架构自然语言处理
本文总结了大模型领域有关特征与数据处理、伦理与公平性等其他部分的名词,并解释其含义。跳出浩如烟海的大模型知识圈层,从概念上理清大模型的基础脉络!序号模块分组说明快捷访问1模型架构与基础概念介绍了【模型架构与基础概念】相关的常见名词及含义大模型中的常用名词介绍一:【模型架构与基础概念】【建议收藏】-CSDN博客2训练方法与技术介绍了【训练方法与技术】相关的常见名词及含义大模型中的常用名词介绍二:【训
- 【Python爬虫(71)】用Python爬虫解锁教育数据的奥秘
奔跑吧邓邓子
Python爬虫python爬虫开发语言教育数据
【Python爬虫】专栏简介:本专栏是Python爬虫领域的集大成之作,共100章节。从Python基础语法、爬虫入门知识讲起,深入探讨反爬虫、多线程、分布式等进阶技术。以大量实例为支撑,覆盖网页、图片、音频等各类数据爬取,还涉及数据处理与分析。无论是新手小白还是进阶开发者,都能从中汲取知识,助力掌握爬虫核心技能,开拓技术视野。目录一、引言二、确定目标网站2.1教育机构官网2.2在线学习平台三、爬
- Hive SQL 精进系列:字符串拼接的三种常用方式
进一步有进一步的欢喜
hivesqlhadoop
Hive字符串拼接:三种常用方式深度剖析目录Hive字符串拼接:三种常用方式深度剖析引言一、简洁直观的`||`操作符1.基础语法规则2.丰富多样的示例展示3.优势与局限分析二、规范通用的`CONCAT`函数1.全面的语法解析2.生动的示例说明3.优势与局限剖析三、灵活指定分隔符的`CONCAT_WS`函数1.清晰的语法介绍2.实用的示例演示3.优势与局限探讨四、总结与选择建议引言在Hive数据处理
- 用ExcelVBA下载ETF历史数据
Excel(Python)高效办公工具
VBA爬虫网抓那些事爬虫
先看结果,视频演示送上:https://www.bilibili.com/video/BV1s8411P7s7/制作思路的话,基本还是从“找数据源--设计表格结构--网抓实现---数据处理”这个逻辑来做。数据源方面,之前其实做过一个基金下载器,当时选择天天基金的数据源(详情见我的另一篇文章https://zhuanlan.zhihu.com/p/582901324),但是后来感觉这个可以获取的字段
- 高效集成销售订单数据到MySQL的方法
CL_IN
mysqlandroid数据库
聚水潭数据集成到MySQL的技术案例分享在企业的数据处理和分析过程中,如何高效地将聚水潭系统中的销售订单数据集成到MySQL数据库中,是一个关键的技术挑战。本文将详细介绍“聚水潭-销售订单-->BI花花尚--销售订单表(非奇门)”这一具体案例,展示如何通过轻易云数据集成平台实现这一目标。首先,我们需要解决的是如何确保从聚水潭获取的数据不漏单,并且能够快速、批量地写入到MySQL中。为此,轻易云提供
- 【自学笔记】讯飞星火基础知识点总览-持续更新
Long_poem
笔记
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录讯飞星火基础知识点总览一、讯飞星火简介二、核心功能1.语音识别2.自然语言处理3.知识图谱4.星火API三、基础概念1.AI模型2.数据处理3.交互方式四、应用场景示例1.办公场景2.学习场景3.生活场景五、总结总结讯飞星火基础知识点总览一、讯飞星火简介讯飞星火是科大讯飞推出的一款强大的AI技术平台,它集成了语音识别、自然语言
- 2024年上半年系统架构设计师论文真题
任铄
软考2024年上半年真题系统架构设计师架构设计软考2024论文范文真题
一、论大数据lambda架构大数据处理架构是专门用于处理和分析巨量复杂数据集的软件架构。它通常包括数据收集、存储、处理、分析和可视化等多个层面,旨在从海量、多样化的数据中提取有价值的信息。Lambda架构是大数据平台里最成熟、最稳定的架构,它是一种将批处理和流处理结合起来的大数据处理系统架构,其核心思想是将批处理作业和实时流处理作业分离,各自独立运行,资源互相隔离,解决传统批处理架构的延迟问题和流
- 2024年5月份架构师考试论文真题完整版
Zoi Gil(学习)
大数据flinkhdfshadooppython
三、论文1.关于大数据的,Lambda架构文老师押中了原题,几乎描述一致撰写关于Lambda架构的软考论文时,一个清晰且结构化的大纲是成功的关键。以下是一个简单的论文大纲示例,旨在覆盖Lambda架构的核心概念、设计原则、优缺点、实际应用案例以及对比其他架构(如Kappa架构)的分析:大纲简要介绍Lambda架构的基本概念及其在大数据处理领域的地位。概述论文的主要研究内容、目的及预期贡献。背景介绍
- 2024架构设计师论文题目
数字化信息化智能化解决方案
2024架构
论文1大数据lamda架构1、简要说明你参开发的软件项目,吸你所承担的主要作2、lamada体系架构将数据流分为批处理层(对应的英文、加速层文、服务层。简要叙这三个层次的用途和特点3、详细阐述你参与开发的软件项目如何基于lamada体系架构进行大数据处理的架构论文2模型驱动架构设计方法及其用1、简要说明你参与分析和研发的软件项目,吸你所承担的要工作2、简要阐述采用模型驱动架构思想进行软件开发的全过
- 点云空洞的边界识别提取 pso-bp 神经网络的模型来修复点云空洞 附python代码
点云-激光雷达-Slam-三维牙齿
激光雷达点云c++为主神经网络人工智能深度学习点云python
代码是一个Python程序,用于处理3D点云数据,特别是检测和修复点云中的孔洞区域。1.**导入库**:-`numpy`:用于数学运算。-`open3d`:用于处理3D数据和可视化。-`torch`:PyTorch库,用于深度学习。-`torch.nn`和`torch.optim`:PyTorch的神经网络和优化器模块。-`mpl_toolkits.mplot3d`和`matplotlib.pyp
- 点云边缘提取及可视化
Alan Lan
PCL
点云素材:bunny.txt#include#include#includevoidCreateCloudFromTxt(conststd::string&file_path,pcl::PointCloud::Ptrcloud){std::ifstreamfin(file_path.c_str());std::stringline;pcl::PointXYZpoint;while(getline(
- 【系统架构设计师】2024年上半年真题论文: 论大数据lambda架构(包括解题思路和素材)
数据知道
系统架构架构系统架构设计师软考高级论文
更多内容请见:备考系统架构设计师-专栏介绍和目录文章目录真题题目(2024年上半年试题1)解题思路论文素材参考真题题目(2024年上半年试题1)大数据处理架构是专门用于处理和分析巨量复杂数据集的软件架构。它通常包括数据收集、存储、处理、分析和可视化等多个层面,旨在从海量、多样化的数据中提取有价值的信息。Lambda架构是大数据平台里最成熟、最稳定的架构,它是一种将批处理和流处理结合起来的大数据处理
- Deep Lake:人工智能时代的数据湖
开源项目精选
人工智能
DeepLake是一款由Activeloop开发的开源深度学习数据湖,旨在解决深度学习数据管理的挑战。它提供高效的多模态数据管理、类似Git的版本控制、强大的查询和可视化功能,并与MLOps生态系统无缝集成,助你轻松驾驭海量数据,加速模型训练!Stars数8,458Forks数652主要特点多模态数据支持:支持图像、视频、音频、文本、点云等各种数据类型。张量存储:以深度学习框架友好的张量格式存储数
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比