如果说数学是皇冠上的一颗明珠,那么算法就是这颗明珠上的光芒,算法让这颗明珠更加熠熠生辉,为科技进步和社会发展照亮了前进的路。数学是美学,算法是艺术。走进算法的人,才能体会它的魅力。
多年来,我有一个梦想,希望每一位提到算法的人,不再立即紧皱眉头,脑海闪现枯燥的公式、冗长的代码;希望每一位阅读和使用算法的人,体会到算法之美,像躺在法国普罗旺斯小镇的长椅上,呷一口红酒,闭上眼睛,体会舌尖上的美味,感受鼻腔中满溢的薰衣草的芳香……
瑞士著名的科学家 N.Wirth 教授曾提出:数据结构+算法=程序。
数据结构是程序的骨架,算法是程序的灵魂。
在我们的生活中,算法无处不在。我们每天早上起来,刷牙、洗脸、吃早餐,都在算着时间,以免上班或上课迟到;去超市购物,在资金有限的情况下,考虑先买什么、后买什么,算算是否超额;在家中做饭,用什么食材、调料,做法、步骤,还要品尝一下咸淡,看看是否做熟。所以,不要说你不懂算法,其实你每天都在用!
但是对计算机专业算法,很多人都有困惑:“I can understand, but I can’tuse!”,我能看懂,但不会用!就像参观莫高窟的壁画,看到它、感受它,却无法走进。我们正需要一把打开算法之门的钥匙,就如陶渊明《桃花源记》中的“初极狭,才通人。复行数十步,豁然开朗。”
我们首先看一道某跨国公司的招聘试题。
写一个算法,求下面序列之和:
−1,1,−1,1,…,(−1)n
当你看到这个题目时,你会怎么想?for 语句?while 循环?
先看算法1-1:
//算法1-1 sum=0;for(i=1; i<=n; i++) { sum=sum+(-1)^n; }
这段代码可以实现求和运算,但是为什么不这样算?!
再看算法1-2:
//算法1-2if(n%2==0) //判断n是不是偶数,%表示求余数 sum =0;else sum=-1;
有的人看到这个代码后恍然大悟,原来可以这样啊?这不就是数学家高斯使用的算法吗?
一共50对数,每对之和均为101,那么总和为:
(1+100)×50=5050
1787年,10岁的高斯用了很短的时间算出了结果,而其他孩子却要算很长时间。
可以看出,算法1-1需要运行n+1次,如果n=100 00,就要运行100 01次,而算法1-2仅仅需要运行1次!是不是有很大差别?
高斯的方法我也知道,但遇到类似的题还是……我用的笨办法也是算法吗?
答:是算法。
算法是指对特定问题求解步骤的一种描述。
算法只是对问题求解方法的一种描述,它不依赖于任何一种语言,既可以用自然语言、程序设计语言(C、C++、Java、Python 等)描述,也可以用流程图、框图来表示。一般为了更清楚地说明算法的本质,我们去除了计算机语言的语法规则和细节,采用“伪代码”来描述算法。“伪代码”介于自然语言和程序设计语言之间,它更符合人们的表达方式,容易理解,但不是严格的程序设计语言,如果要上机调试,需要转换成标准的计算机程序设计语言才能运行。
算法具有以下特性。
(1)有穷性:算法是由若干条指令组成的有穷序列,总是在执行若干次后结束,不可能永不停止。
(2)确定性:每条语句有确定的含义,无歧义。
(3)可行性:算法在当前环境条件下可以通过有限次运算实现。
(4)输入输出:有零个或多个输入,一个或多个输出。
算法1-2的确算得挺快的,但如何知道我写的算法好不好呢?
“好”算法的标准如下。
(1)正确性:正确性是指算法能够满足具体问题的需求,程序运行正常,无语法错误,能够通过典型的软件测试,达到预期的需求。
(2)易读性:算法遵循标识符命名规则,简洁易懂,注释语句恰当适量,方便自己和他人阅读,便于后期调试和修改。
(3)健壮性:算法对非法数据及操作有较好的反应和处理。例如,在学生信息管理系统中登记学生年龄时,若将21岁误输入为210岁,系统应该提示出错。
(4)高效性:高效性是指算法运行效率高,即算法运行所消耗的时间短。算法时间复杂度就是算法运行需要的时间。现代计算机一秒钟能计算数亿次,因此不能用秒来具体计算算法消耗的时间,由于相同配置的计算机进行一次基本运算的时间是一定的,我们可以用算法基本运算的执行次数来衡量算法的效率。因此,将算法基本运算的执行次数作为时间复杂度的衡量标准。
(5)低存储性:低存储性是指算法所需要的存储空间低。对于像手机、平板电脑这样的嵌入式设备,算法如果占用空间过大,则无法运行。算法占用的空间大小称为空间复杂度。
除了(1)~(3)中的基本标准外,我们对好的算法的评判标准就是高效率、低存储。
(1)~(3)中的标准都好办,但时间复杂度怎么算呢?
时间复杂度:算法运行需要的时间,一般将算法的执行次数作为时间复杂度的度量标准。
看算法1-3,并分析算法的时间复杂度。
//算法1-3 sum=0; //运行1次total=0; //运行1次for(i=1; i<=n; i++) //运行n次{ sum=sum+i; //运行n次 for(j=1; j<=n; j++) //运行n*n次 total=total+i*j; //运行n*n次}
把算法的所有语句的运行次数加起来:1+1+n+n+n×n+n×n,可以用一个函数T(n)表达:
T(n)=2n2+2n+2
当n足够大时,例如n=105时,T(n)=2×1010+2×105+2,我们可以看到算法运行时间主要取决于第一项,后面的甚至可以忽略不计。
用极限表示为:
如果用时间复杂度的渐近上界表示,如图1-1所示。
从图1-1中可以看出,当nn0时,T(n)
Cf (n),当n足够大时,T(n)和f (n)近似相等。因此,我们用О(f (n))来表示时间复杂度渐近上界,通常用这种表示法衡量算法时间复杂度。算法1-3的时间复杂度渐近上界为О(f (n))=О(n2),用极限表示为:
图1-1 渐近时间复杂度上界
还有渐近下界符号Ω(T(n)
Cf (n)),如图1-2所示。
图1-2 渐近时间复杂度下界
从图1-2可以看出,当nn0时,T(n)
Cf (n),当n足够大时,T(n)和f (n)近似相等,因此,我们用Ω(f (n))来表示时间复杂度渐近下界。
渐近精确界符号Θ(C1f (n)
T(n)
C2f (n)),如图1-3所示。
从图1-3中可以看出,当nn0时,C1f (n)
T(n)
C2f (n),当n足够大时,T(n)和f (n)近似相等。这种两边逼近的方式,更加精确近似,因此,用Θ (f (n))来表示时间复杂度渐近精确界。
图1-3 渐进时间复杂度精确界
我们通常使用时间复杂度渐近上界О(f (n))来表示时间复杂度。
看算法1-4,并分析算法的时间复杂度。
//算法1-4i=1; //运行1次while(i<=n) //可假设运行x次{ i=i*2; //可假设运行x次}
观察算法1-4,无法立即确定 while 及i=i*2运行了多少次。这时可假设运行了x次,每次运算后i值为2,22,23,…,2x,当i=n时结束,即2x=n时结束,则x=log2n,那么算法1-4的运算次数为1+2log2n,时间复杂度渐近上界为О(f (n))=О(log2n)。
在算法分析中,渐近复杂度是对算法运行次数的粗略估计,大致反映问题规模增长趋势,而不必精确计算算法的运行时间。在计算渐近时间复杂度时,可以只考虑对算法运行时间贡献大的语句,而忽略那些运算次数少的语句,循环语句中处在循环内层的语句往往运行次数最多,即为对运行时间贡献最大的语句。例如在算法1-3中,total=total+i*j是对算法贡献最大的语句,只计算该语句的运行次数即可。
注意:不是每个算法都能直接计算运行次数。
例如算法1-5,在a[n]数组中顺序查找x,返回其下标i,如果没找到,则返回−1。
//算法1-5 findx(int x) //在a[n]数组中顺序查找x{ for(i=0; i
我们很难计算算法1-5中的程序到底执行了多少次,因为运行次数依赖于x在数组中的位置,如果第一个元素就是x,则执行1次(最好情况);如果最后一个元素是x,则执行n次(最坏情况);如果分布概率均等,则平均执行次数为(n+1)/2。
有些算法,如排序、查找、插入等算法,可以分为最好、最坏和平均情况分别求算法渐近复杂度,但我们考查一个算法通常考查最坏的情况,而不是考查最好的情况,最坏情况对衡量算法的好坏具有实际的意义。
我明白了,那空间复杂度应该就是算法占了多大存储空间了?
空间复杂度:算法占用的空间大小。一般将算法的辅助空间作为衡量空间复杂度的标准。
空间复杂度的本意是指算法在运行过程中占用了多少存储空间。算法占用的存储空间包括:
(1)输入/输出数据;
(2)算法本身;
(3)额外需要的辅助空间。
输入/输出数据占用的空间是必需的,算法本身占用的空间可以通过精简算法来缩减,但这个压缩的量是很小的,可以忽略不计。而在运行时使用的辅助变量所占用的空间,即辅助空间是衡量空间复杂度的关键因素。
看算法1-6,将两个数交换,并分析其空间复杂度。
//算法1-6 swap(int x,int y) //x与y交换 { int temp; temp=x; //temp为辅助空间 ① x=y; ② y=temp; ③ }
两数的交换过程如图1-4所示。
图1-4 两数交换过程
图1-4中的步骤标号与算法1-6中的语句标号一一对应,该算法使用了一个辅助空间temp,空间复杂度为О(1)。
注意:递归算法中,每一次递推需要一个栈空间来保存调用记录,因此,空间复杂度需要计算递归栈的辅助空间。
更多内容和思考题,请关注·极客书·
《趣学算法》— —陈小玉
》》》除了好书,还有好课《《《
授人以鱼不如授人以渔,作者在对每个算法的分析、
分解和实现的过程中,同时也会分享设计算法的方法和一些常用的技巧。
本课程将带着大家“玩”算法,其实就是希望大家能做到以下三点:
对于遇到特殊问题时要能够自己设计出算法实现;
对于原理公开的知名算法,要能将算法原理翻译成具体的算法代码;
对已有具体实现的算法,要能够设计合适的数学模型,并将算法应用到实际问题中。
《算法应该怎么“玩”》展示有趣的问题、启发有趣的思路、归纳有趣的解法,是一门有趣的课程。
——王益,百度美研 T10 架构师,百度深度学习系统 PaddlePaddle 的技术负责人
《算法应该怎么“玩”》是真正在训练读者解决问题的能力,而解决问题的能力,正是任何一家公司所需人才的最核心的技能。
——黄鑫(飞林沙),极光推送首席科学家