最近做双目测距项目,网上一大堆代码,放vs里各种错,仔细看下opencv官方自带双目标定与测距例程,还是官方的程序靠谱,在这里把使用方法记录下来,避免后人入坑,大家熟悉以后直接在例程基础上改就行,以免被网上的垃圾程序浪费时间!
1.开发环境:win10 / vs2022 / opencv4.5.5(vs-opencv自行百度,每个版本文件夹都有对应例程)
2.项目位置:opencv\sources\samples\cpp\stereo_calib.cpp||stereo_match.cpp
3.运行流程:复制到vs工程中直接在代码中修改CommandLineParser,在||之间填入参数后直接调试
关于:CommandLineParser 请自行百度,当初拿到例程不会用研究了半天,就是要通过这个函数把相应的参数传给程序才能启动,简略说明在开头注释中:
4.注意事项:全部为opencv原封代码,仅修改开头注释中,可直接去opencv官网下载,有不懂的地方欢迎留言
/*
cv::CommandLineParser parser(argc, argv, "{w|9|}{h|6|}{s|1.0|}{nr||}{help||} {@input|stereo_calib.xml|}");
w:棋盘横向交点个数
h:棋盘纵向交点个数
s:棋盘宽度,单位厘米
input:图片路径存放位置
注意:直接在||之间填入参数启动,例如:w为10,h为8,宽度为2.5cm则{w|10|}{h|8|}{s|2.5|}
以此类推,弄清楚每个参数的意义,不填的直接空着
*/
#include "opencv2/calib3d.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
using namespace cv;
using namespace std;
static int print_help(char** argv)
{
cout <<
" Given a list of chessboard images, the number of corners (nx, ny)\n"
" on the chessboards, and a flag: useCalibrated for \n"
" calibrated (0) or\n"
" uncalibrated \n"
" (1: use stereoCalibrate(), 2: compute fundamental\n"
" matrix separately) stereo. \n"
" Calibrate the cameras and display the\n"
" rectified results along with the computed disparity images. \n" << endl;
cout << "Usage:\n " << argv[0] << " -w= -h= -s= \n" << endl;
return 0;
}
static void
StereoCalib(const vector<string>& imagelist, Size boardSize, float squareSize, bool displayCorners = false, bool useCalibrated=true, bool showRectified=true)
{
if( imagelist.size() % 2 != 0 )
{
cout << "Error: the image list contains odd (non-even) number of elements\n";
return;
}
const int maxScale = 2;
// ARRAY AND VECTOR STORAGE:
vector<vector<Point2f> > imagePoints[2];
vector<vector<Point3f> > objectPoints;
Size imageSize;
int i, j, k, nimages = (int)imagelist.size()/2;
imagePoints[0].resize(nimages);
imagePoints[1].resize(nimages);
vector<string> goodImageList;
for( i = j = 0; i < nimages; i++ )
{
for( k = 0; k < 2; k++ )
{
const string& filename = imagelist[i*2+k];
Mat img = imread(filename, 0);
if(img.empty())
break;
if( imageSize == Size() )
imageSize = img.size();
else if( img.size() != imageSize )
{
cout << "The image " << filename << " has the size different from the first image size. Skipping the pair\n";
break;
}
bool found = false;
vector<Point2f>& corners = imagePoints[k][j];
for( int scale = 1; scale <= maxScale; scale++ )
{
Mat timg;
if( scale == 1 )
timg = img;
else
resize(img, timg, Size(), scale, scale, INTER_LINEAR_EXACT);
found = findChessboardCorners(timg, boardSize, corners,
CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE);
if( found )
{
if( scale > 1 )
{
Mat cornersMat(corners);
cornersMat *= 1./scale;
}
break;
}
}
if( displayCorners )
{
cout << filename << endl;
Mat cimg, cimg1;
cvtColor(img, cimg, COLOR_GRAY2BGR);
drawChessboardCorners(cimg, boardSize, corners, found);
double sf = 640./MAX(img.rows, img.cols);
resize(cimg, cimg1, Size(), sf, sf, INTER_LINEAR_EXACT);
imshow("corners", cimg1);
char c = (char)waitKey(500);
if( c == 27 || c == 'q' || c == 'Q' ) //Allow ESC to quit
exit(-1);
}
else
putchar('.');
if( !found )
break;
cornerSubPix(img, corners, Size(11,11), Size(-1,-1),
TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,
30, 0.01));
}
if( k == 2 )
{
goodImageList.push_back(imagelist[i*2]);
goodImageList.push_back(imagelist[i*2+1]);
j++;
}
}
cout << j << " pairs have been successfully detected.\n";
nimages = j;
if( nimages < 2 )
{
cout << "Error: too little pairs to run the calibration\n";
return;
}
imagePoints[0].resize(nimages);
imagePoints[1].resize(nimages);
objectPoints.resize(nimages);
for( i = 0; i < nimages; i++ )
{
for( j = 0; j < boardSize.height; j++ )
for( k = 0; k < boardSize.width; k++ )
objectPoints[i].push_back(Point3f(k*squareSize, j*squareSize, 0));
}
cout << "Running stereo calibration ...\n";
Mat cameraMatrix[2], distCoeffs[2];
cameraMatrix[0] = initCameraMatrix2D(objectPoints,imagePoints[0],imageSize,0);
cameraMatrix[1] = initCameraMatrix2D(objectPoints,imagePoints[1],imageSize,0);
Mat R, T, E, F;
double rms = stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1],
cameraMatrix[0], distCoeffs[0],
cameraMatrix[1], distCoeffs[1],
imageSize, R, T, E, F,
CALIB_FIX_ASPECT_RATIO +
CALIB_ZERO_TANGENT_DIST +
CALIB_USE_INTRINSIC_GUESS +
CALIB_SAME_FOCAL_LENGTH +
CALIB_RATIONAL_MODEL +
CALIB_FIX_K3 + CALIB_FIX_K4 + CALIB_FIX_K5,
TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 100, 1e-5) );
cout << "done with RMS error=" << rms << endl;
// CALIBRATION QUALITY CHECK
// because the output fundamental matrix implicitly
// includes all the output information,
// we can check the quality of calibration using the
// epipolar geometry constraint: m2^t*F*m1=0
double err = 0;
int npoints = 0;
vector<Vec3f> lines[2];
for( i = 0; i < nimages; i++ )
{
int npt = (int)imagePoints[0][i].size();
Mat imgpt[2];
for( k = 0; k < 2; k++ )
{
imgpt[k] = Mat(imagePoints[k][i]);
undistortPoints(imgpt[k], imgpt[k], cameraMatrix[k], distCoeffs[k], Mat(), cameraMatrix[k]);
computeCorrespondEpilines(imgpt[k], k+1, F, lines[k]);
}
for( j = 0; j < npt; j++ )
{
double errij = fabs(imagePoints[0][i][j].x*lines[1][j][0] +
imagePoints[0][i][j].y*lines[1][j][1] + lines[1][j][2]) +
fabs(imagePoints[1][i][j].x*lines[0][j][0] +
imagePoints[1][i][j].y*lines[0][j][1] + lines[0][j][2]);
err += errij;
}
npoints += npt;
}
cout << "average epipolar err = " << err/npoints << endl;
// save intrinsic parameters
FileStorage fs("intrinsics.yml", FileStorage::WRITE);
if( fs.isOpened() )
{
fs << "M1" << cameraMatrix[0] << "D1" << distCoeffs[0] <<
"M2" << cameraMatrix[1] << "D2" << distCoeffs[1];
fs.release();
}
else
cout << "Error: can not save the intrinsic parameters\n";
Mat R1, R2, P1, P2, Q;
Rect validRoi[2];
stereoRectify(cameraMatrix[0], distCoeffs[0],
cameraMatrix[1], distCoeffs[1],
imageSize, R, T, R1, R2, P1, P2, Q,
CALIB_ZERO_DISPARITY, 1, imageSize, &validRoi[0], &validRoi[1]);
fs.open("extrinsics.yml", FileStorage::WRITE);
if( fs.isOpened() )
{
fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2 << "P1" << P1 << "P2" << P2 << "Q" << Q;
fs.release();
}
else
cout << "Error: can not save the extrinsic parameters\n";
// OpenCV can handle left-right
// or up-down camera arrangements
bool isVerticalStereo = fabs(P2.at<double>(1, 3)) > fabs(P2.at<double>(0, 3));
// COMPUTE AND DISPLAY RECTIFICATION
if( !showRectified )
return;
Mat rmap[2][2];
// IF BY CALIBRATED (BOUGUET'S METHOD)
if( useCalibrated )
{
// we already computed everything
}
// OR ELSE HARTLEY'S METHOD
else
// use intrinsic parameters of each camera, but
// compute the rectification transformation directly
// from the fundamental matrix
{
vector<Point2f> allimgpt[2];
for( k = 0; k < 2; k++ )
{
for( i = 0; i < nimages; i++ )
std::copy(imagePoints[k][i].begin(), imagePoints[k][i].end(), back_inserter(allimgpt[k]));
}
F = findFundamentalMat(Mat(allimgpt[0]), Mat(allimgpt[1]), FM_8POINT, 0, 0);
Mat H1, H2;
stereoRectifyUncalibrated(Mat(allimgpt[0]), Mat(allimgpt[1]), F, imageSize, H1, H2, 3);
R1 = cameraMatrix[0].inv()*H1*cameraMatrix[0];
R2 = cameraMatrix[1].inv()*H2*cameraMatrix[1];
P1 = cameraMatrix[0];
P2 = cameraMatrix[1];
}
//Precompute maps for cv::remap()
initUndistortRectifyMap(cameraMatrix[0], distCoeffs[0], R1, P1, imageSize, CV_16SC2, rmap[0][0], rmap[0][1]);
initUndistortRectifyMap(cameraMatrix[1], distCoeffs[1], R2, P2, imageSize, CV_16SC2, rmap[1][0], rmap[1][1]);
Mat canvas;
double sf;
int w, h;
if( !isVerticalStereo )
{
sf = 600./MAX(imageSize.width, imageSize.height);
w = cvRound(imageSize.width*sf);
h = cvRound(imageSize.height*sf);
canvas.create(h, w*2, CV_8UC3);
}
else
{
sf = 300./MAX(imageSize.width, imageSize.height);
w = cvRound(imageSize.width*sf);
h = cvRound(imageSize.height*sf);
canvas.create(h*2, w, CV_8UC3);
}
for( i = 0; i < nimages; i++ )
{
for( k = 0; k < 2; k++ )
{
Mat img = imread(goodImageList[i*2+k], 0), rimg, cimg;
remap(img, rimg, rmap[k][0], rmap[k][1], INTER_LINEAR);
cvtColor(rimg, cimg, COLOR_GRAY2BGR);
Mat canvasPart = !isVerticalStereo ? canvas(Rect(w*k, 0, w, h)) : canvas(Rect(0, h*k, w, h));
resize(cimg, canvasPart, canvasPart.size(), 0, 0, INTER_AREA);
if( useCalibrated )
{
Rect vroi(cvRound(validRoi[k].x*sf), cvRound(validRoi[k].y*sf),
cvRound(validRoi[k].width*sf), cvRound(validRoi[k].height*sf));
rectangle(canvasPart, vroi, Scalar(0,0,255), 3, 8);
}
}
if( !isVerticalStereo )
for( j = 0; j < canvas.rows; j += 16 )
line(canvas, Point(0, j), Point(canvas.cols, j), Scalar(0, 255, 0), 1, 8);
else
for( j = 0; j < canvas.cols; j += 16 )
line(canvas, Point(j, 0), Point(j, canvas.rows), Scalar(0, 255, 0), 1, 8);
imshow("rectified", canvas);
char c = (char)waitKey();
if( c == 27 || c == 'q' || c == 'Q' )
break;
}
}
static bool readStringList( const string& filename, vector<string>& l )
{
l.resize(0);
FileStorage fs(filename, FileStorage::READ);
if( !fs.isOpened() )
return false;
FileNode n = fs.getFirstTopLevelNode();
if( n.type() != FileNode::SEQ )
return false;
FileNodeIterator it = n.begin(), it_end = n.end();
for( ; it != it_end; ++it )
l.push_back((string)*it);
return true;
}
int main(int argc, char** argv)
{
Size boardSize;
string imagelistfn;
bool showRectified;
cv::CommandLineParser parser(argc, argv, "{w|9|}{h|6|}{s|1.0|}{nr||}{help||}{@input|stereo_calib.xml|}");
if (parser.has("help"))
return print_help(argv);
showRectified = !parser.has("nr");
imagelistfn = samples::findFile(parser.get<string>("@input"));
boardSize.width = parser.get<int>("w");
boardSize.height = parser.get<int>("h");
float squareSize = parser.get<float>("s");
if (!parser.check())
{
parser.printErrors();
return 1;
}
vector<string> imagelist;
bool ok = readStringList(imagelistfn, imagelist);
if(!ok || imagelist.empty())
{
cout << "can not open " << imagelistfn << " or the string list is empty" << endl;
return print_help(argv);
}
StereoCalib(imagelist, boardSize, squareSize, false, true, showRectified);
return 0;
}
/*
stereo_match.cpp 双目摄像头拍摄图片匹配
cv::CommandLineParser parser(argc, argv,
"{@arg1||}{@arg2||}{help h||}{algorithm||}{max-disparity|0|}{blocksize|0|}{no-display||}{color||}{scale|1|}{i||}{e||}{o||}{p||}");
arg1:左摄像头图片位置
arg1:左摄像头图片位置
algorithm:匹配方法
max-disparity:基本参数,必须是16的倍数,自己试效果
blocksize:区块大小,奇数1~11,和分辨率有关,640*480实测5左右合适
注意:直接在||之间填入参数启动,例如:arg1为left.jpg,arg1为right.jpg,方法为sgbm则
{@arg1|left.jpg|}{@arg2|right.jpg|}{help h||}{algorithm|sgbm|}
以此类推,弄清楚每个参数的意义,不填的直接空着
*/
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/core/utility.hpp"
#include
#include
using namespace cv;
static void print_help(char** argv)
{
printf("\nDemo stereo matching converting L and R images into disparity and point clouds\n");
printf("\nUsage: %s [--algorithm=bm|sgbm|hh|hh4|sgbm3way] [--blocksize=]\n"
"[--max-disparity=] [--scale=scale_factor>] [-i=] [-e=]\n"
"[--no-display] [--color] [-o=] [-p=]\n" , argv[0]);
}
static void saveXYZ(const char* filename, const Mat& mat)
{
const double max_z = 1.0e4;
FILE* fp = fopen(filename, "wt");
for(int y = 0; y < mat.rows; y++)
{
for(int x = 0; x < mat.cols; x++)
{
Vec3f point = mat.at<Vec3f>(y, x);
if(fabs(point[2] - max_z) < FLT_EPSILON || fabs(point[2]) > max_z) continue;
fprintf(fp, "%f %f %f\n", point[0], point[1], point[2]);
}
}
fclose(fp);
}
int main(int argc, char** argv)
{
std::string img1_filename = "";
std::string img2_filename = "";
std::string intrinsic_filename = "";
std::string extrinsic_filename = "";
std::string disparity_filename = "";
std::string point_cloud_filename = "";
enum { STEREO_BM=0, STEREO_SGBM=1, STEREO_HH=2, STEREO_VAR=3, STEREO_3WAY=4, STEREO_HH4=5 };
int alg = STEREO_SGBM;
int SADWindowSize, numberOfDisparities;
bool no_display;
bool color_display;
float scale;
Ptr<StereoBM> bm = StereoBM::create(16,9);
Ptr<StereoSGBM> sgbm = StereoSGBM::create(0,16,3);
cv::CommandLineParser parser(argc, argv,
"{@arg1||}{@arg2||}{help h||}{algorithm||}{max-disparity|0|}{blocksize|0|}{no-display||}{color||}{scale|1|}{i||}{e||}{o||}{p||}");
if(parser.has("help"))
{
print_help(argv);
return 0;
}
img1_filename = samples::findFile(parser.get<std::string>(0));
img2_filename = samples::findFile(parser.get<std::string>(1));
if (parser.has("algorithm"))
{
std::string _alg = parser.get<std::string>("algorithm");
alg = _alg == "bm" ? STEREO_BM :
_alg == "sgbm" ? STEREO_SGBM :
_alg == "hh" ? STEREO_HH :
_alg == "var" ? STEREO_VAR :
_alg == "hh4" ? STEREO_HH4 :
_alg == "sgbm3way" ? STEREO_3WAY : -1;
}
numberOfDisparities = parser.get<int>("max-disparity");
SADWindowSize = parser.get<int>("blocksize");
scale = parser.get<float>("scale");
no_display = parser.has("no-display");
color_display = parser.has("color");
if( parser.has("i") )
intrinsic_filename = parser.get<std::string>("i");
if( parser.has("e") )
extrinsic_filename = parser.get<std::string>("e");
if( parser.has("o") )
disparity_filename = parser.get<std::string>("o");
if( parser.has("p") )
point_cloud_filename = parser.get<std::string>("p");
if (!parser.check())
{
parser.printErrors();
return 1;
}
if( alg < 0 )
{
printf("Command-line parameter error: Unknown stereo algorithm\n\n");
print_help(argv);
return -1;
}
if ( numberOfDisparities < 1 || numberOfDisparities % 16 != 0 )
{
printf("Command-line parameter error: The max disparity (--maxdisparity=<...>) must be a positive integer divisible by 16\n");
print_help(argv);
return -1;
}
if (scale < 0)
{
printf("Command-line parameter error: The scale factor (--scale=<...>) must be a positive floating-point number\n");
return -1;
}
if (SADWindowSize < 1 || SADWindowSize % 2 != 1)
{
printf("Command-line parameter error: The block size (--blocksize=<...>) must be a positive odd number\n");
return -1;
}
if( img1_filename.empty() || img2_filename.empty() )
{
printf("Command-line parameter error: both left and right images must be specified\n");
return -1;
}
if( (!intrinsic_filename.empty()) ^ (!extrinsic_filename.empty()) )
{
printf("Command-line parameter error: either both intrinsic and extrinsic parameters must be specified, or none of them (when the stereo pair is already rectified)\n");
return -1;
}
if( extrinsic_filename.empty() && !point_cloud_filename.empty() )
{
printf("Command-line parameter error: extrinsic and intrinsic parameters must be specified to compute the point cloud\n");
return -1;
}
int color_mode = alg == STEREO_BM ? 0 : -1;
Mat img1 = imread(img1_filename, color_mode);
Mat img2 = imread(img2_filename, color_mode);
if (img1.empty())
{
printf("Command-line parameter error: could not load the first input image file\n");
return -1;
}
if (img2.empty())
{
printf("Command-line parameter error: could not load the second input image file\n");
return -1;
}
if (scale != 1.f)
{
Mat temp1, temp2;
int method = scale < 1 ? INTER_AREA : INTER_CUBIC;
resize(img1, temp1, Size(), scale, scale, method);
img1 = temp1;
resize(img2, temp2, Size(), scale, scale, method);
img2 = temp2;
}
Size img_size = img1.size();
Rect roi1, roi2;
Mat Q;
if( !intrinsic_filename.empty() )
{
// reading intrinsic parameters
FileStorage fs(intrinsic_filename, FileStorage::READ);
if(!fs.isOpened())
{
printf("Failed to open file %s\n", intrinsic_filename.c_str());
return -1;
}
Mat M1, D1, M2, D2;
fs["M1"] >> M1;
fs["D1"] >> D1;
fs["M2"] >> M2;
fs["D2"] >> D2;
M1 *= scale;
M2 *= scale;
fs.open(extrinsic_filename, FileStorage::READ);
if(!fs.isOpened())
{
printf("Failed to open file %s\n", extrinsic_filename.c_str());
return -1;
}
Mat R, T, R1, P1, R2, P2;
fs["R"] >> R;
fs["T"] >> T;
stereoRectify( M1, D1, M2, D2, img_size, R, T, R1, R2, P1, P2, Q, CALIB_ZERO_DISPARITY, -1, img_size, &roi1, &roi2 );
Mat map11, map12, map21, map22;
initUndistortRectifyMap(M1, D1, R1, P1, img_size, CV_16SC2, map11, map12);
initUndistortRectifyMap(M2, D2, R2, P2, img_size, CV_16SC2, map21, map22);
Mat img1r, img2r;
remap(img1, img1r, map11, map12, INTER_LINEAR);
remap(img2, img2r, map21, map22, INTER_LINEAR);
img1 = img1r;
img2 = img2r;
}
numberOfDisparities = numberOfDisparities > 0 ? numberOfDisparities : ((img_size.width/8) + 15) & -16;
bm->setROI1(roi1);
bm->setROI2(roi2);
bm->setPreFilterCap(31);
bm->setBlockSize(SADWindowSize > 0 ? SADWindowSize : 9);
bm->setMinDisparity(0);
bm->setNumDisparities(numberOfDisparities);
bm->setTextureThreshold(10);
bm->setUniquenessRatio(15);
bm->setSpeckleWindowSize(100);
bm->setSpeckleRange(32);
bm->setDisp12MaxDiff(1);
sgbm->setPreFilterCap(63);
int sgbmWinSize = SADWindowSize > 0 ? SADWindowSize : 3;
sgbm->setBlockSize(sgbmWinSize);
int cn = img1.channels();
sgbm->setP1(8*cn*sgbmWinSize*sgbmWinSize);
sgbm->setP2(32*cn*sgbmWinSize*sgbmWinSize);
sgbm->setMinDisparity(0);
sgbm->setNumDisparities(numberOfDisparities);
sgbm->setUniquenessRatio(10);
sgbm->setSpeckleWindowSize(100);
sgbm->setSpeckleRange(32);
sgbm->setDisp12MaxDiff(1);
if(alg==STEREO_HH)
sgbm->setMode(StereoSGBM::MODE_HH);
else if(alg==STEREO_SGBM)
sgbm->setMode(StereoSGBM::MODE_SGBM);
else if(alg==STEREO_HH4)
sgbm->setMode(StereoSGBM::MODE_HH4);
else if(alg==STEREO_3WAY)
sgbm->setMode(StereoSGBM::MODE_SGBM_3WAY);
Mat disp, disp8;
//Mat img1p, img2p, dispp;
//copyMakeBorder(img1, img1p, 0, 0, numberOfDisparities, 0, IPL_BORDER_REPLICATE);
//copyMakeBorder(img2, img2p, 0, 0, numberOfDisparities, 0, IPL_BORDER_REPLICATE);
int64 t = getTickCount();
float disparity_multiplier = 1.0f;
if( alg == STEREO_BM )
{
bm->compute(img1, img2, disp);
if (disp.type() == CV_16S)
disparity_multiplier = 16.0f;
}
else if( alg == STEREO_SGBM || alg == STEREO_HH || alg == STEREO_HH4 || alg == STEREO_3WAY )
{
sgbm->compute(img1, img2, disp);
if (disp.type() == CV_16S)
disparity_multiplier = 16.0f;
}
t = getTickCount() - t;
printf("Time elapsed: %fms\n", t*1000/getTickFrequency());
//disp = dispp.colRange(numberOfDisparities, img1p.cols);
if( alg != STEREO_VAR )
disp.convertTo(disp8, CV_8U, 255/(numberOfDisparities*16.));
else
disp.convertTo(disp8, CV_8U);
Mat disp8_3c;
if (color_display)
cv::applyColorMap(disp8, disp8_3c, COLORMAP_TURBO);
if(!disparity_filename.empty())
imwrite(disparity_filename, color_display ? disp8_3c : disp8);
if(!point_cloud_filename.empty())
{
printf("storing the point cloud...");
fflush(stdout);
Mat xyz;
Mat floatDisp;
disp.convertTo(floatDisp, CV_32F, 1.0f / disparity_multiplier);
reprojectImageTo3D(floatDisp, xyz, Q, true);
saveXYZ(point_cloud_filename.c_str(), xyz);
printf("\n");
}
if( !no_display )
{
std::ostringstream oss;
oss << "disparity " << (alg==STEREO_BM ? "bm" :
alg==STEREO_SGBM ? "sgbm" :
alg==STEREO_HH ? "hh" :
alg==STEREO_VAR ? "var" :
alg==STEREO_HH4 ? "hh4" :
alg==STEREO_3WAY ? "sgbm3way" : "");
oss << " blocksize:" << (alg==STEREO_BM ? SADWindowSize : sgbmWinSize);
oss << " max-disparity:" << numberOfDisparities;
std::string disp_name = oss.str();
namedWindow("left", cv::WINDOW_NORMAL);
imshow("left", img1);
namedWindow("right", cv::WINDOW_NORMAL);
imshow("right", img2);
namedWindow(disp_name, cv::WINDOW_AUTOSIZE);
imshow(disp_name, color_display ? disp8_3c : disp8);
printf("press ESC key or CTRL+C to close...");
fflush(stdout);
printf("\n");
while(1)
{
if(waitKey() == 27) //ESC (prevents closing on actions like taking screenshots)
break;
}
}
return 0;
}