统计学习方法03—朴素贝叶斯算法

目录

1.朴素贝叶斯的基本原理 

2. 贝叶斯算法实现

2.1 数据集的准备与处理

2.2 GaussianNB 高斯朴素贝叶斯

 2.2.1 @staticmethod静态方法

 2.2.2 几种概率统计量的编码

2.3 scikit-learn 高斯贝叶斯实例 

2.4 贝叶斯的伯努利模型和多项式模型

 3. 意犹未尽


1.朴素贝叶斯的基本原理 

统计学习方法03—朴素贝叶斯算法_第1张图片

统计学习方法03—朴素贝叶斯算法_第2张图片

2. 贝叶斯算法实现

2.1 数据集的准备与处理

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt


from sklearn.datasets import load_iris #数据集提供包
from sklearn.model_selection import train_test_split #数据集划分包

from collections import Counter
import math

# 加载数据,并做预处理
def create_data():
    iris = load_iris() # 加载数据集
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, :])
    print("查看data的数据详情:",data)
    return data[:,:-1], data[:,-1]

#将调用create_data()的返回值data[:,:-1], data[:,-1],分别传给X,y
#Tips: data[:,:-1]---> 表示取最后一列以外的全部数据(作为训练数据)
#       data[:,-1]----> 表示取最后一列(通常用作标签)
X, y = create_data()

# 将所有训练数据X以及所有标签y,按test_size=0.3的比例分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
print("查看第一个测试集的训练数据和标签数据:",X_test[0], y_test[0])
C:\Users\ZARD\anaconda3\envs\PyTorch\python.exe C:/Users/ZARD/PycharmProjects/pythonProject/统计学习算法实现/Naive_Bayes.py
查看data的数据详情: [[5.1 3.5 1.4 0.2 0. ]
 [4.9 3.  1.4 0.2 0. ]
 [4.7 3.2 1.3 0.2 0. ]
 [4.6 3.1 1.5 0.2 0. ]
 [5.  3.6 1.4 0.2 0. ]
 [5.4 3.9 1.7 0.4 0. ]
 [4.6 3.4 1.4 0.3 0. ]
 [5.  3.4 1.5 0.2 0. ]
 [4.4 2.9 1.4 0.2 0. ]
 [4.9 3.1 1.5 0.1 0. ]
 [5.4 3.7 1.5 0.2 0. ]
 [4.8 3.4 1.6 0.2 0. ]
 [4.8 3.  1.4 0.1 0. ]
 [4.3 3.  1.1 0.1 0. ]
 [5.8 4.  1.2 0.2 0. ]
 [5.7 4.4 1.5 0.4 0. ]
 [5.4 3.9 1.3 0.4 0. ]
 [5.1 3.5 1.4 0.3 0. ]
 [5.7 3.8 1.7 0.3 0. ]
 [5.1 3.8 1.5 0.3 0. ]
 [5.4 3.4 1.7 0.2 0. ]
 [5.1 3.7 1.5 0.4 0. ]
 [4.6 3.6 1.  0.2 0. ]
 [5.1 3.3 1.7 0.5 0. ]
 [4.8 3.4 1.9 0.2 0. ]
 [5.  3.  1.6 0.2 0. ]
 [5.  3.4 1.6 0.4 0. ]
 [5.2 3.5 1.5 0.2 0. ]
 [5.2 3.4 1.4 0.2 0. ]
 [4.7 3.2 1.6 0.2 0. ]
 [4.8 3.1 1.6 0.2 0. ]
 [5.4 3.4 1.5 0.4 0. ]
 [5.2 4.1 1.5 0.1 0. ]
 [5.5 4.2 1.4 0.2 0. ]
 [4.9 3.1 1.5 0.2 0. ]
 [5.  3.2 1.2 0.2 0. ]
 [5.5 3.5 1.3 0.2 0. ]
 [4.9 3.6 1.4 0.1 0. ]
 [4.4 3.  1.3 0.2 0. ]
 [5.1 3.4 1.5 0.2 0. ]
 [5.  3.5 1.3 0.3 0. ]
 [4.5 2.3 1.3 0.3 0. ]
 [4.4 3.2 1.3 0.2 0. ]
 [5.  3.5 1.6 0.6 0. ]
 [5.1 3.8 1.9 0.4 0. ]
 [4.8 3.  1.4 0.3 0. ]
 [5.1 3.8 1.6 0.2 0. ]
 [4.6 3.2 1.4 0.2 0. ]
 [5.3 3.7 1.5 0.2 0. ]
 [5.  3.3 1.4 0.2 0. ]
 [7.  3.2 4.7 1.4 1. ]
 [6.4 3.2 4.5 1.5 1. ]
 [6.9 3.1 4.9 1.5 1. ]
 [5.5 2.3 4.  1.3 1. ]
 [6.5 2.8 4.6 1.5 1. ]
 [5.7 2.8 4.5 1.3 1. ]
 [6.3 3.3 4.7 1.6 1. ]
 [4.9 2.4 3.3 1.  1. ]
 [6.6 2.9 4.6 1.3 1. ]
 [5.2 2.7 3.9 1.4 1. ]
 [5.  2.  3.5 1.  1. ]
 [5.9 3.  4.2 1.5 1. ]
 [6.  2.2 4.  1.  1. ]
 [6.1 2.9 4.7 1.4 1. ]
 [5.6 2.9 3.6 1.3 1. ]
 [6.7 3.1 4.4 1.4 1. ]
 [5.6 3.  4.5 1.5 1. ]
 [5.8 2.7 4.1 1.  1. ]
 [6.2 2.2 4.5 1.5 1. ]
 [5.6 2.5 3.9 1.1 1. ]
 [5.9 3.2 4.8 1.8 1. ]
 [6.1 2.8 4.  1.3 1. ]
 [6.3 2.5 4.9 1.5 1. ]
 [6.1 2.8 4.7 1.2 1. ]
 [6.4 2.9 4.3 1.3 1. ]
 [6.6 3.  4.4 1.4 1. ]
 [6.8 2.8 4.8 1.4 1. ]
 [6.7 3.  5.  1.7 1. ]
 [6.  2.9 4.5 1.5 1. ]
 [5.7 2.6 3.5 1.  1. ]
 [5.5 2.4 3.8 1.1 1. ]
 [5.5 2.4 3.7 1.  1. ]
 [5.8 2.7 3.9 1.2 1. ]
 [6.  2.7 5.1 1.6 1. ]
 [5.4 3.  4.5 1.5 1. ]
 [6.  3.4 4.5 1.6 1. ]
 [6.7 3.1 4.7 1.5 1. ]
 [6.3 2.3 4.4 1.3 1. ]
 [5.6 3.  4.1 1.3 1. ]
 [5.5 2.5 4.  1.3 1. ]
 [5.5 2.6 4.4 1.2 1. ]
 [6.1 3.  4.6 1.4 1. ]
 [5.8 2.6 4.  1.2 1. ]
 [5.  2.3 3.3 1.  1. ]
 [5.6 2.7 4.2 1.3 1. ]
 [5.7 3.  4.2 1.2 1. ]
 [5.7 2.9 4.2 1.3 1. ]
 [6.2 2.9 4.3 1.3 1. ]
 [5.1 2.5 3.  1.1 1. ]
 [5.7 2.8 4.1 1.3 1. ]]
查看第一个测试集的训练数据和标签数据: [4.8 3.1 1.6 0.2] 0.0

Process finished with exit code 0

 Tips: data[:,:-1]---> 表示取最后一列以外的全部数据(作为训练数据)
            data[:,-1]----> 表示取最后一列(通常用作标签)

将加载数据,并做预处理步骤打包成函数,也是不错的一个思想诺!

2.2 GaussianNB 高斯朴素贝叶斯

参考:https://machinelearningmastery.com/naive-bayes-classifier-scratch-python/ 

统计学习方法03—朴素贝叶斯算法_第3张图片

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt


from sklearn.datasets import load_iris #数据集提供包
from sklearn.model_selection import train_test_split #数据集划分包

from collections import Counter
import math

# 加载数据,并做预处理
def create_data():
    iris = load_iris() # 加载数据集
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, :])
    print("查看data的数据详情:",data)
    return data[:,:-1], data[:,-1]

#将调用create_data()的返回值data[:,:-1], data[:,-1],分别传给X,y
#Tips: data[:,:-1]---> 表示取最后一列以外的全部数据(作为训练数据)
#       data[:,-1]----> 表示取最后一列(通常用作标签)
X, y = create_data()

# 将所有训练数据X以及所有标签y,按test_size=0.3的比例分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
print("查看第一个测试集的训练数据和标签数据:",X_test[0], y_test[0])

class NaiveBayes:
    def __init__(self):
        self.model = None

    # 数学期望
    @staticmethod #静态方法:不实例化类的情况下可以直接访问该方法
    def mean(X):
        return sum(X) / float(len(X))

    # 标准差(方差)
    def stdev(self, X):
        avg = self.mean(X)
        return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))

    # 概率密度函数
    def gaussian_probability(self, x, mean, stdev):
        exponent = math.exp(-(math.pow(x - mean, 2) /
                              (2 * math.pow(stdev, 2))))
        return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent

    # 处理X_train
    def summarize(self, train_data):
        summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
        return summaries

    # 分类别求出数学期望和标准差
    def fit(self, X, y):
        labels = list(set(y))
        data = {label: [] for label in labels}
        for f, label in zip(X, y):
            data[label].append(f)
        self.model = {
            label: self.summarize(value)
            for label, value in data.items()
        }
        return 'gaussianNB train done!'

    # 计算概率
    def calculate_probabilities(self, input_data):
        # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
        # input_data:[1.1, 2.2]
        probabilities = {}
        for label, value in self.model.items():
            probabilities[label] = 1
            for i in range(len(value)):
                mean, stdev = value[i]
                probabilities[label] *= self.gaussian_probability(
                    input_data[i], mean, stdev)
        return probabilities

    # 类别
    def predict(self, X_test):
        # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
        label = sorted(
            self.calculate_probabilities(X_test).items(),
            key=lambda x: x[-1])[-1][0]
        return label

    def score(self, X_test, y_test):
        right = 0
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right += 1

        return right / float(len(X_test))

model = NaiveBayes() #实例化朴素贝叶斯
model.fit(X_train, y_train) #分类别求出数学期望和标准差

print(model.predict([4.4,  3.2,  1.3,  0.2]))  # 0.0
model.score(X_test, y_test) #1.0

 2.2.1 @staticmethod静态方法

(1条消息) python 理解@staticmethod静态方法_季布,的博客-CSDN博客_python @staticmethod原理

 2.2.2 几种概率统计量的编码

   # 数学期望
    @staticmethod #静态方法:不实例化类的情况下可以直接访问该方法
    def mean(X):
        return sum(X) / float(len(X))

    # 标准差(方差)
    def stdev(self, X):
        avg = self.mean(X)
        return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))

    # 概率密度函数
    def gaussian_probability(self, x, mean, stdev):
        exponent = math.exp(-(math.pow(x - mean, 2) /
                              (2 * math.pow(stdev, 2))))
        return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent

    # 处理X_train
    def summarize(self, train_data):
        summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
        return summaries

    # 分类别求出数学期望和标准差
    def fit(self, X, y):
        labels = list(set(y))
        data = {label: [] for label in labels}
        for f, label in zip(X, y):
            data[label].append(f)
        self.model = {
            label: self.summarize(value)
            for label, value in data.items()
        }
        return 'gaussianNB train done!'

    # 计算概率
    def calculate_probabilities(self, input_data):
        # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
        # input_data:[1.1, 2.2]
        probabilities = {}
        for label, value in self.model.items():
            probabilities[label] = 1
            for i in range(len(value)):
                mean, stdev = value[i]
                probabilities[label] *= self.gaussian_probability(
                    input_data[i], mean, stdev)
        return probabilities

2.3 scikit-learn 高斯贝叶斯实例 

from sklearn.naive_bayes import GaussianNB

 主要代码如下:

from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()  # 实例化高斯贝叶斯模型
clf.fit(X_train, y_train) #分类别求出数学期望和标准差
print(clf.score(X_test, y_test)) #类别
print(clf.predict([[4.4,  3.2,  1.3,  0.2]]))  # 0.0
from sklearn.naive_bayes import GaussianNB
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris #数据集提供包
from sklearn.model_selection import train_test_split #数据集划分包

from collections import Counter
import math

# 加载数据,并做预处理
def create_data():
    iris = load_iris() # 加载数据集
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, :])
    print("查看data的数据详情:",data)
    return data[:,:-1], data[:,-1]

#将调用create_data()的返回值data[:,:-1], data[:,-1],分别传给X,y
#Tips: data[:,:-1]---> 表示取最后一列以外的全部数据(作为训练数据)
#       data[:,-1]----> 表示取最后一列(通常用作标签)
X, y = create_data()

# 将所有训练数据X以及所有标签y,按test_size=0.3的比例分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
print("查看第一个测试集的训练数据和标签数据:",X_test[0], y_test[0])

clf = GaussianNB()  # 实例化高斯贝叶斯模型
clf.fit(X_train, y_train) #分类别求出数学期望和标准差
print(clf.score(X_test, y_test)) #类别
print(clf.predict([[4.4,  3.2,  1.3,  0.2]]))  # 0.0

2.4 贝叶斯的伯努利模型和多项式模型

from sklearn.naive_bayes import BernoulliNB, MultinomialNB # 伯努利模型和多项式模型

参考代码:https://github.com/wzyonggege/statistical-learning-method

本文代码更新地址:https://github.com/fengdu78/lihang-code

中文注释制作:机器学习初学者公众号:ID:ai-start-com

 

 3. 意犹未尽

如下大佬文章来满足:

scikit-learn 朴素贝叶斯类库使用小结 - 刘建平Pinard - 博客园 (cnblogs.com)

(1条消息) 朴素贝叶斯分类算法[sklearn.naive_bayes/GaussianNB/MultinomialNB/BernoulliNB]_Doris_H_n_q的博客-CSDN博客

一文搞懂Python库中的5种贝叶斯算法 - 知乎 (zhihu.com)
超参数调优总结,贝叶斯优化Python代码示例 - 知乎 (zhihu.com)

贝叶斯超参数寻优(附Python代码,scikit-optimize) - 知乎 (zhihu.com)

你可能感兴趣的:(深度学习,学习方法)