图神经网络(三):节点分类

节点分类问题

数据集:Cora
包含七类学术论文,论文与论文之间存在引用和被引用的关系

数据集导入

from torch_geometric.datasets import Planetoid
from torch_geometric.transforms import NormalizeFeatures

dataset=Planetoid(root='dataset',name='Cora',transform=NormalizeFeatures())
data=dataset[0]
print(data)

Data(edge_index=[2, 10556], test_mask=[2708], train_mask=[2708], val_mask=[2708], x=[2708, 1433], y=[2708])

打印数据集信息

print()
print(f'Dataset: {dataset}:')
print('======================')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')

data = dataset[0]  # Get the first graph object.

print()
print(data)
print('======================')

# Gather some statistics about the graph.
print(f'Number of nodes: {data.num_nodes}')
print(f'Number of edges: {data.num_edges}')
print(f'Average node degree: {data.num_edges / data.num_nodes:.2f}')
print(f'Number of training nodes: {data.train_mask.sum()}')
print(f'Training node label rate: {int(data.train_mask.sum()) / data.num_nodes:.2f}')
print(f'Contains isolated nodes: {data.contains_isolated_nodes()}')
print(f'Contains self-loops: {data.contains_self_loops()}')
print(f'Is undirected: {data.is_undirected()}')

Dataset: Cora():
Number of graphs: 1
Number of features: 1433
Number of classes: 7

Data(edge_index=[2, 10556], test_mask=[2708], train_mask=[2708], val_mask=[2708], x=[2708, 1433], y=[2708])
Number of nodes: 2708
Number of edges: 10556
Average node degree: 3.90
Number of training nodes: 140
Training node label rate: 0.05
Contains isolated nodes: False
Contains self-loops: False
Is undirected: True

节点分类图打印

import matplotlib.pyplot as plt
from sklearn.manifold import TSNE

def visualize(h, color):
    z = TSNE(n_components=2).fit_transform(out.detach().cpu().numpy())
    plt.figure(figsize=(10,10))
    plt.xticks([])
    plt.yticks([])

    plt.scatter(z[:, 0], z[:, 1], s=70, c=color, cmap="Set2")
    plt.show()

MLP分类

import torch.nn.functional as F
import torch
from torch.nn import Linear

class MLP(torch.nn.Module):
    def __init__(self,hidden_channels):
        super(MLP,self).__init__()
        torch.manual_seed(12345)#为GPU设置种子
        self.lin1=Linear(dataset.num_features,hidden_channels)
        self.lin2=Linear(hidden_channels,dataset.num_classes)
    def forward(self,x):
        x=self.lin1(x)
        x=x.relu()
        x=F.dropout(x,p=0.5,training=self.training)
        x=self.lin2(x)
        return x
    
model=MLP(hidden_channels=16)
print(model)
            

训练和测试

criterion = torch.nn.CrossEntropyLoss()  # 交叉熵
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)  # 优化器

def train():
    model.train()
    optimizer.zero_grad()  # 梯度清0
    out = model(data.x)  # x的节点表征作为输入
    loss = criterion(out[data.train_mask], data.y[data.train_mask])  # 计算损失
    loss.backward()  # Derive gradients.
    optimizer.step()  # Update parameters based on gradients.
    return loss

for epoch in range(1, 201):
    loss = train()
    print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}')

def test():
    model.eval()
    out=model(data.x)
    pred=out.argmax(dim=1)
    test_correct=pred[data.test_mask]==data.y[data.test_mask]
    test_acc=int(test_correct.sum())/int(data.test_mask.sum())
    return test_acc
test_acc=test()
print(f'accuracy: {test_acc:.4f}')

准确率:0.59

打印


model.eval()

out = model(data.x)
visualize(out, color=data.y)

图神经网络(三):节点分类_第1张图片

GCN

from torch_geometric.nn import GCNConv

class GCN(torch.nn.Module):
    def __init__(self,hidden_channels):
        super(GCN,self).__init__()
        self.conv1=GCNConv(dataset.num_features,hidden_channels)
        self.conv2=GCNConv(hidden_channels,dataset.num_classes)
    
    def forward(self,x,edge_index):
        x = self.conv1(x, edge_index)
        x = x.relu()
        x = F.dropout(x, p=0.5, training=self.training)
        x = self.conv2(x, edge_index)
        return x

model = GCN(hidden_channels=16)
print(model)
        

训练和测试

criterion = torch.nn.CrossEntropyLoss()  # 交叉熵
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)  # 优化器
def train():
    model.train()
    x,edge_index=data.x,data.edge_index
    optimizer.zero_grad()
    out=model(x,edge_index)
    loss=criterion(out[data.train_mask],data.y[data.train_mask])
    loss.backward()
    optimizer.step()
    return loss
for epoch in range(1,201):
    loss=train()
    print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}')

def test():
    model.eval()
    out = model(data.x, data.edge_index)
    pred = out.argmax(dim=1)  # Use the class with highest probability.
    test_correct = pred[data.test_mask] == data.y[data.test_mask]  # Check against ground-truth labels.
    test_acc = int(test_correct.sum()) / int(data.test_mask.sum())  # Derive ratio of correct predictions.
    return test_acc
test_acc = test()
print(f'Test Accuracy: {test_acc:.4f}')

准确率:0.826

打印

model.eval()
out=model(data.x,data.edge_index)
visualize(out,color=data.y)

图神经网络(三):节点分类_第2张图片

GAT

from torch_geometric.nn import GATConv

class GCN(torch.nn.Module):
    def __init__(self,hidden_channels):
        super(GAT,self).__init__()
        self.conv1=GATConv(dataset.num_features,hidden_channels)
        self.conv2=GATConv(hidden_channels,dataset.num_classes)
    
    def forward(self,x,edge_index):
        x = self.conv1(x, edge_index)
        x = x.relu()
        x = F.dropout(x, p=0.5, training=self.training)
        x = self.conv2(x, edge_index)
        return x

model = GAT(hidden_channels=16)
print(model)
        

训练和测试

criterion = torch.nn.CrossEntropyLoss()  # 交叉熵
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)  # 优化器
def train():
    model.train()
    x,edge_index=data.x,data.edge_index
    optimizer.zero_grad()
    out=model(x,edge_index)
    loss=criterion(out[data.train_mask],data.y[data.train_mask])
    loss.backward()
    optimizer.step()
    return loss
for epoch in range(1,201):
    loss=train()
    print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}')

def test():
    model.eval()
    out = model(data.x, data.edge_index)
    pred = out.argmax(dim=1)  # Use the class with highest probability.
    test_correct = pred[data.test_mask] == data.y[data.test_mask]  # Check against ground-truth labels.
    test_acc = int(test_correct.sum()) / int(data.test_mask.sum())  # Derive ratio of correct predictions.
    return test_acc
test_acc = test()
print(f'Test Accuracy: {test_acc:.4f}')

准确率:0.755

打印

model.eval()
out=model(data.x,data.edge_index)
visualize(out,color=data.y)

图神经网络(三):节点分类_第3张图片

总结

本次主要是学习pyg中内置的一些图网络的使用,但是想要深挖其中的原理,还是需要从源码入手,已经通过消息传递机制来构建自己的图网络。

你可能感兴趣的:(图神经网络,深度学习)