YOLOv5、v7改进之三十八:引入RepVGG模型结构

前 言:作为当前先进的深度学习目标检测算法YOLOv7,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv7的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv7,YOLOv5算法2020年至今已经涌现出大量改进论文,这个不论对于搞科研的同学或者已经工作的朋友来说,研究的价值和新颖度都不太够了,为与时俱进,以后改进算法以YOLOv7为基础,此前YOLOv5改进方法在YOLOv7同样适用,所以继续YOLOv5系列改进的序号。另外改进方法在YOLOv5等其他算法同样可以适用进行改进。希望能够对大家有帮助。

具体改进办法请关注后私信留言!关注即可免费领取深度学习算法资料!

解决问题:之前改进增加了很多注意力机制的方法,包括比较常规的SE、CBAM等,本文加入简单但功能强大的轻量级卷积神经网络结构,权衡网络精度和速度,实现双赢的检测效果。

基本原理:

提出了一种简单但功能强大的卷积神经网络结构,它具有一个类似VGG的推理时间体,由3×3卷积和ReLU组成,而训练时间模型具有多分支拓扑。这种训练时间和推理时间架构的解耦是通过结构重新参数化技术实现的,因此该模型被命名为RepVGG。在ImageNet上,据我们所知,RepVGG达到了80%以上的前1精度,这是普通模型的第一次。在NVIDIA 1080Ti GPU上࿰

你可能感兴趣的:(YOLOv7,YOLOv5,投稿,深度学习,计算机视觉,目标检测)