欧拉公式的三种证明方法:导数、幂级数、极坐标

目录

  • 欧拉公式(Euler's formula)
  • 证明
    • 方法1: 使用导数
    • 方法2: 使用幂级数
    • 方法3: 使用 极坐标
      • 虚数转极坐标背景知识
      • 开始证明

欧拉公式(Euler’s formula)

e i x = cos ⁡ x + i sin ⁡ x e^{ix} = \cos x + i\sin x eix=cosx+isinx

证明

方法1: 使用导数

如果函数 f ( x ) f(x) f(x)的导数满足对任意的 x x x f ′ ( x ) = 0 f'(x)=0 f(x)=0,且存在 x ′ x' x使 f ( x ′ ) = C f(x')=C f(x)=C,则该函数为常数函数 y = C y=C y=C,其中 C C C为常数。

下面根据这个结论证明欧拉公式:

f ( θ ) = cos ⁡ θ + i sin ⁡ θ e i θ = e − i θ ( cos ⁡ θ + i sin ⁡ θ ) f(\theta) = \frac{\cos\theta + i\sin\theta}{e^{i\theta}} = e^{-i\theta} \left(\cos\theta + i \sin\theta\right) f(θ)=eiθcosθ+isinθ=eiθ(cosθ+isinθ)

∵ \because f ′ ( θ ) = e − i θ ( i cos ⁡ θ − sin ⁡ θ ) − i e − i θ ( cos ⁡ θ + i sin ⁡ θ ) = 0 f'(\theta) = e^{-i\theta} \left(i\cos\theta - \sin\theta\right) - ie^{-i\theta} \left(\cos\theta + i\sin\theta\right) = 0 f(θ)=eiθ(icosθsinθ)ieiθ(cosθ+isinθ)=0

∴ \therefore f ( θ ) f(\theta) f(θ)是常数

∵ \because f ( 0 ) = 1 f(0)=1 f(0)=1

∴ \therefore 对任意 θ \theta θ,都有 f ( θ ) = 1 f(\theta)=1 f(θ)=1是常数

∴ \therefore e i x = cos ⁡ x + i sin ⁡ x e^{ix} = \cos x + i\sin x eix=cosx+isinx

方法2: 使用幂级数

本方法使用麦克劳林级数(Maclaurin Series)进行证明。

  • 关于虚数 i i i的一些事实:
    i 0 = 1 , i 1 = i , i 2 = − 1 , i 3 = − i , i 4 = 1 , i 5 = i , i 6 = − 1 , i 7 = − i ⋮ ⋮ ⋮ ⋮ \begin{align} i^0 &= 1, & i^1 &= i, & i^2 &= -1, & i^3 &= -i, \\ i^4 &= 1, & i^5 &= i, & i^6 &= -1, & i^7 &= -i \\ &\vdots & &\vdots & &\vdots & &\vdots \end{align} i0i4=1,=1,i1i5=i,=i,i2i6=1,=1,i3i7=i,=i

  • s i n ( x ) sin(x) sin(x) c o s ( x ) cos(x) cos(x)的麦克劳林展开:
    s i n ( x ) = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + x 8 8 ! − ⋯ sin(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \cdots sin(x)=12!x2+4!x46!x6+8!x8
    c o s ( x ) = i ( x − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯   ) cos(x) = i\left( x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \right) cos(x)=i(x3!x3+5!x57!x7+)

  • e x e^x ex的麦克劳林展开:
    e i x = 1 + i x + ( i x ) 2 2 ! + ( i x ) 3 3 ! + ( i x ) 4 4 ! + ( i x ) 5 5 ! + ( i x ) 6 6 ! + ( i x ) 7 7 ! + ( i x ) 8 8 ! + ⋯ = 1 + i x − x 2 2 ! − i x 3 3 ! + x 4 4 ! + i x 5 5 ! − x 6 6 ! − i x 7 7 ! + x 8 8 ! + ⋯ = ( 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + x 8 8 ! − ⋯   ) + i ( x − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯   ) = cos ⁡ x + i sin ⁡ x \begin{align} e^{ix} &= 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \frac{(ix)^7}{7!} + \frac{(ix)^8}{8!} + \cdots \\[8pt] &= 1 + ix - \frac{x^2}{2!} - \frac{ix^3}{3!} + \frac{x^4}{4!} + \frac{ix^5}{5!} - \frac{x^6}{6!} - \frac{ix^7}{7!} + \frac{x^8}{8!} + \cdots \\[8pt] &= \left( 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \cdots \right) + i\left( x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \right) \\[8pt] &= \cos x + i\sin x \end{align} eix=1+ix+2!(ix)2+3!(ix)3+4!(ix)4+5!(ix)5+6!(ix)6+7!(ix)7+8!(ix)8+=1+ix2!x23!ix3+4!x4+5!ix56!x67!ix7+8!x8+=(12!x2+4!x46!x6+8!x8)+i(x3!x3+5!x57!x7+)=cosx+isinx

所以欧拉公式得证。■

方法3: 使用 极坐标

虚数转极坐标背景知识

参考:所有复数都可以用极坐标表示
r r r θ θ θ是对应于非零复数 z = x + i y z=x+iy z=x+iy的点(x,y)的极坐标, 因为 x = r c o s θ x=rcosθ x=rcosθ, y = r s i n θ y=rsinθ y=rsinθ z z z可以被写成极坐标的形式: z = r ( c o s θ + i s i n θ ) z=r(cos\theta+isin\theta) z=r(cosθ+isinθ)
比如 3 + 4 i 3+4i 3+4i的极坐标表示如下(虚数转极坐标网站链接):
欧拉公式的三种证明方法:导数、幂级数、极坐标_第1张图片

开始证明


e i x = r ( cos ⁡ θ + i sin ⁡ θ ) \begin{align} e^{ix} = r \left(\cos \theta + i \sin \theta\right) \end{align} eix=r(cosθ+isinθ)如果证明(8)式的 r = 1 r=1 r=1,则欧拉公式得证。

对(8)式两边同时求导,可得:
i e i x = ( cos ⁡ θ + i sin ⁡ θ ) d r d x + r ( − sin ⁡ θ + i cos ⁡ θ ) d θ d x \begin{align} i e ^{ix} = \left(\cos \theta + i \sin \theta\right) \frac{dr}{dx} + r \left(-\sin \theta + i \cos \theta\right) \frac{d\theta}{dx} \end{align} ieix=(cosθ+isinθ)dxdr+r(sinθ+icosθ)dxdθ
r ( cos ⁡ θ + i sin ⁡ θ ) r \left(\cos \theta + i \sin \theta\right) r(cosθ+isinθ)代替 e i x e^{ix} eix并化简可得:
( c o s θ d r d x − r s i n θ d θ d x + r s i n θ ) + i ( s i n θ d r d x − r c o s θ d θ d x + r c o s θ ) = 0 \begin{align} (cos\theta {\frac {dr} {dx}}-rsin\theta {\frac {d\theta} {dx}}+rsin\theta)+ i(sin\theta {\frac {dr} {dx}}-rcos\theta {\frac {d\theta} {dx}}+rcos\theta)=0 \end{align} (cosθdxdrrsinθdxdθ+rsinθ)+i(sinθdxdrrcosθdxdθ+rcosθ)=0
因此(10)式的实部和虚部均等于0:
c o s θ d r d x − r s i n θ d θ d x + r s i n θ = 0 s i n θ d r d x − r c o s θ d θ d x + r c o s θ = 0 \begin{align} cos\theta {\frac {dr} {dx}}-rsin\theta {\frac {d\theta} {dx}}+rsin\theta=0 \\ sin\theta {\frac {dr} {dx}}-rcos\theta {\frac {d\theta} {dx}}+rcos\theta=0 \end{align} cosθdxdrrsinθdxdθ+rsinθ=0sinθdxdrrcosθdxdθ+rcosθ=0

(11),(12)两式可解得 d r d x = 0 {\frac {dr} {dx}}=0 dxdr=0, d θ d x = 1 {\frac {d\theta} {dx}}=1 dxdθ=1,因此 r r r是一个常数 C 1 C1 C1 θ \theta θ x + C 2 x+C2 x+C2

因为 e 0 i = 1 e^{0i}=1 e0i=1,虚数的模长为1,可得 r = C 1 = 1 r=C1=1 r=C1=1,进而通过 1 = c o s θ + i s i n θ 1=cos\theta+isin\theta 1=cosθ+isinθ得出 θ ( 0 ) = 0 + C 2 = 0 \theta(0)=0+C2=0 θ(0)=0+C2=0,所以C1=1,C2=0,即 r = 1 r=1 r=1 θ = x \theta=x θ=x,因此:
e i x = 1 ( cos ⁡ x + i sin ⁡ x ) = cos ⁡ x + i sin ⁡ x . e^{ix} = 1(\cos x +i \sin x) = \cos x + i \sin x. eix=1(cosx+isinx)=cosx+isinx.
欧拉公式得证。■


你可能感兴趣的:(专栏04-数学知识)