- 云服务业界动态简报-20180128
Captain7
一、青云青云QingCloud推出深度学习平台DeepLearningonQingCloud,包含了主流的深度学习框架及数据科学工具包,通过QingCloudAppCenter一键部署交付,可以让算法工程师和数据科学家快速构建深度学习开发环境,将更多的精力放在模型和算法调优。二、腾讯云1.腾讯云正式发布腾讯专有云TCE(TencentCloudEnterprise)矩阵,涵盖企业版、大数据版、AI
- 机器学习VS深度学习
nfgo
机器学习
机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是人工智能(AI)的两个子领域,它们有许多相似之处,但在技术实现和应用范围上也有显著区别。下面从几个方面对两者进行区分:1.概念层面机器学习:是让计算机通过算法从数据中自动学习和改进的技术。它依赖于手动设计的特征和数学模型来进行学习,常用的模型有决策树、支持向量机、线性回归等。深度学习:是机器学习的一个子领
- 机器视觉_联合编程(二)
Zhangci]
VisionPro数码相机计算机视觉人工智能VisionPro机器视觉
链接相机,加载tb,检测FrameGrabber链接相机拍照usingSystem;usingSystem.Collections;usingSystem.Collections.Generic;usingSystem.ComponentModel;usingSystem.Data;usingSystem.Drawing;usingSystem.Linq;usingSystem.Text;usin
- linux查看jupyter运行,在Linux服务器上运行Jupyter notebook server教程
天启大烁哥
在Linux服务器上运行Jupyternotebookserver教程很多deeplearning教程都推荐在jupyternotebook运行python代码,方便及时交互。但只在本地运行没有GPU环境,虽然googlecolab是个好办法,但发现保存模型后在云端找不到模型文件,且需要合理上网才能访问。于是想给实验室的服务器配置jupyternotebook,供本机远程访问。踩了不少坑,码一下教
- 使用matlab的热门问题
七十二五
值得关注matlab开发语言青少年编程算法经验分享
MATLAB广泛应用于科学计算、数据分析、信号处理、图像处理、机器学习等多个领域,因此热门问题也涵盖了这些方面。以下是一些可能被认为当前最热门的MATLAB问题:深度学习与神经网络:如何使用MATLAB的深度学习工具箱(DeepLearningToolbox)来构建和训练神经网络?如何利用MATLAB进行图像识别、语音识别或自然语言处理等深度学习应用?数据分析与可视化:如何使用MATLAB进行大数
- COI实验室技能:图像到图像的深度学习开发框架(pytorch版)
山颠海涯
深度学习pytorch人工智能
Basicdeeplearningframeworkforimage-to-image这个开发框架旨在帮助科研人员快速地实现图像到图像之间的模型开发。github连接:https://github.com/SituLab/Basic-deep-learning-framework-for-image-to-image目录1模型开发1-1克隆项目到本地1-2深度学习开发2环境配置2-1安装conda
- EI检索-机器视觉、图像处理与影像技术国际学术会议(MVIPIT 2023)邀您参会!
诗远Yolanda
图像处理人工智能计算机视觉
机器视觉是计算机学科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。而图像处理等技术的快速发展也推动了机器视觉的发展。机器视觉在我国具有广泛的工业应用,核心功能包括:测量,检测,识别,定位等。第一届机器视觉、图像处理与影像技术国际学术会议(MVIPIT2023)将于2023年7月26日-28日在浙江杭
- 学习Halcon可以从以下几个方面入手
视觉人机器视觉
机器视觉Halcon大总结学习人工智能深度学习图像处理计算机视觉视觉检测
基础理论学习:了解Halcon的基本概念、架构和主要技术,包括图像处理、机器视觉、深度学习等方面的知识。官方文档和教程:阅读Halcon的官方文档和教程,这是学习Halcon最直接、最权威的途径。官方文档详细介绍了Halcon的各种功能和算子,是学习Halcon不可或缺的资源。实践项目:通过参与实际项目来巩固所学知识,提升实践能力。可以从简单的项目开始,
- Python深度学习-环境
cunzai1985
tensorflowpython深度学习人工智能anaconda
Python深度学习-环境(PythonDeepLearning-Environment)Inthischapter,wewilllearnabouttheenvironmentsetupforPythonDeepLearning.Wehavetoinstallthefollowingsoftwareformakingdeeplearningalgorithms.在本章中,我们将学习为Python
- 最新2024年国际EI会议集合
AC学术中心
EI论文
最新2024年国际EI会议集合,要说哪个渠道录用最快,当属EI会议,最快1个月录用,超级快的可能仅需15天,非常适合计算机、机械、工程技术等理工科方向。除了录用周期的优势外,EI会议相较于SCI、EI源刊、国内核心等价格更便宜,几千元即可发表EI会议论文。下面AC学术中心给大家介绍一下近期要举办的EI会议。第二届机器视觉、图像处理与影像技术国际会议(MVIPIT2024)会议时间:2024年9月1
- acm会议什么档次_盘点AI国际顶级会议
weixin_39531992
acm会议什么档次
人工智能(英文全称ArtificialIntelligence,缩写为AI)从其字面意思理解是由人制造出来在机器上体现出的类似于人类的智能,其技术研究包含机器视觉、机器学习、自然语言处理、机器运动和控制等众多方面。如同四大时装周是世界时尚潮流的风向标,人工智能领域的国际顶尖会议也往往汇集了人工智能各分支技术的最新发展状态和未来发展方向。今天,小编就来为大家盘点一下人工智能领域的国际顶级会议。\\\
- 【机器视觉--光学】工业相机成像原理
Vision Z
机器视觉镜头工业相机机器视觉
相机成像原理分为透镜成像原理和小孔成像原理,工业相机原理与透镜成像类似。透镜成像原理凸透镜的成像规律是即:物距的倒数与像距的倒数之和等于焦距的倒数对焦原理工业相机镜头分为定焦、定倍、变焦镜头,常用的是定焦和定倍,定倍镜头调整相距,达到清晰的成像,根据上面的公式,想要得到远处清晰的成像,镜片组到芯片距离需要增加,想要得到近距离的成像时,镜片组到芯片距离需要减小。定倍镜头放大倍数已知,工作距离已知,安
- 关于光源的明场和暗场照明
InvokeLife
机器视觉光源
明场:光源与被测物成一定角度,使得绝大部分的光反射到摄像机,我们称作明场照明[1]。暗场:光源位置使得大部分的光没有反射到摄像机,仅仅将照射到被测物的特定部分的光反射到摄像机,我们称此种照明为暗场照明[1]。如下,明场和暗场的示意图[2]。根据直射、漫射,以及正面背面还可以再分。未完待续。[1]《机器视觉算法与应用》第二版[2]《默然光源选型手册》
- 机器视觉-4 检测原理之OpenCV Blob特征检测
dingkm666
机器视觉计算机视觉人工智能深度学习
在OpenCV中,BLOB(BinaryLargeOBjects)检测是一种用于识别和分析二值图像中连通区域的技术。OpenCV提供了专门的工具类SimpleBlobDetector来帮助实现这一功能。以下是关于OpenCV中BLOB检测的详细说明,包括其原理、使用方法和应用场景。一.什么是BLOB?在图像处理的背景下,BLOB指的是图像中颜色一致且连接在一起的像素区域。在二值图像中,这些区域通常
- 机器视觉-1 常用的机器视觉开发库
dingkm666
机器视觉机器学习
机器视觉-1常用的机器视觉开发库前言:工欲善其事必先利其器,选择一个合适的视觉开发库是在机器视觉领域的发展的重要基础。1.OpenCV(OpenSourceComputerVisionLibrary)简介:OpenCV是最著名和最广泛使用的开源计算机视觉库之一。由Intel于1999年开发,目前由OpenCV.org维护,支持C++、Python、Java和MATLAB等多种编程语言。功能:图像处
- 深度学习-OpenCV运用(3)
红米煮粥
深度学习opencv人工智能
文章目录一、简介二、OpenCV运用1.图片扩充2.图像阈值处理3.添加椒盐噪声三、总结一、简介深度学习(DeepLearning)与OpenCV(OpenSourceComputerVisionLibrary)的结合为计算机视觉领域带来了强大的解决方案。OpenCV是一个开源的计算机视觉和机器学习软件库,它提供了大量的视觉处理算法,包括但不限于图像和视频处理、特征检测、对象识别等。二、OpenC
- 【论文阅读】Purloining Deep Learning Models Developed for an Ultrasound Scanner to a Competitor Machine
Bosenya12
科研学习模型窃取论文阅读深度学习人工智能模型安全
TheArtoftheSteal:PurloiningDeepLearningModelsDevelopedforanUltrasoundScannertoaCompetitorMachine(2024)摘要Atransferfunctionapproach(传递函数方法)hasrecentlyproveneffectiveforcalibratingdeeplearning(DL)algorit
- 【论文阅读】QUEEN: Query Unlearning against Model Extraction(2024)
Bosenya12
科研学习模型窃取论文阅读提取攻击模型安全
摘要Modelextractionattacks(模型提取攻击)currentlyposeanon-negligiblethreat(不可忽视的威胁)tothesecurity(安全性)andprivacy(隐私性)ofdeeplearningmodels.Byqueryingthemodelwithasmalldataset(通过小数据集查询模型)andusingthequeryresultsa
- 【论文阅读33】Deep learning optoacoustic tomography with sparse data
弹伦琴的雷登
【论文阅读系列】人工智能深度学习论文阅读图像处理
Deeplearningoptoacoustictomographywithsparsedata论文题目:基于稀疏数据的深度学习光声断层扫描论文链接:Deeplearningoptoacoustictomographywithsparsedata|NatureMachineIntelligence代码链接:GitHub-ndavoudi/sparse_artefact_unet数据链接:Data发
- 工业相机参数之帧率相关知识详解
小白学视觉
人工智能javapython计算机视觉编程语言
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达工业相机是机器视觉系统的重要组成部分之一,在机器视觉系统中有着非常重要的作用。工业相机已经被广泛应用于工业生产线在线检测、智能交通,机器视觉,科研,军事科学,航天航空等众多领域。工业相机的主要参数包括:分辨率、帧率、像素、像元尺寸、光谱响应特性等。下面我们来对工业相机帧率的相关知识进行讲解:帧率(Framerate)是用于测量显
- 机器视觉按需求选择工业相机的方法
鸦芽_hujiamei
图像处理机器视觉机器视觉相机选择
信号工业相机的信号类型有模拟信号和数字信号两种。模拟相机必须有图像采集卡,标准的模拟相机分辨率很低,采集到的是模拟信号,经数字采集卡转换为数字信号进行传输存储。工业数字相机采集到的是数字信号,数字信号不受电噪声影响,因此,数字相机的动态范围更高,能够向计算机传输更精确的信号。分辨率根据具体需求来选择相机分辨率的大小,如果一个像素对应一个缺陷的话,那么这样的系统一定会极不稳定,所以我们为了提高系统的
- 工业相机测长仪的组成部分
蓝鹏测控
自动化制造其他
关键字:工业相机测长仪,高精度测长仪,视觉测量系统,蓝鹏测控测长仪,工业测长仪,本文介绍了蓝鹏测控公司机器视觉业务测长仪的核心产品及技术特点,主要涵盖相机部分、相机防护系统、补光系统和软件部分。(一)相机部分我司的机器视觉业务聚焦工业视觉传感应用,专注光学技术、嵌入式硬件技术和底层算法软件,为客户提供领先的机器视觉硬件产品和算法平台。公司拥有成熟的研发及质量管控体系,从设计源头确保每一款产品的高品
- python里的i_Python 中[::] 与 [:,:,i] 总结
桌游顽主的航仔
python里的i
最近在学吴恩达的DeepLearning中的第五门课SequenceModel,第一个lab是用Numpy搭建RNN,在搭建RNN的时候用到了Numpy的Slicing([:,:,i]),在这里想总结下[:,:,i]与[::i]的用法,有写的不对的地方请随时指教。总的来说,[::i]是Python中的基础索引,而[:,:,i]是Numpy中对于多维度Array的提取,在StackOverflow中
- 视觉系统的革新:嵌入式AI摄像头
7aa5938c2f5f
学号:17050610006姓名:韦运泽文章链接:https://mp.weixin.qq.com/s/VzuM-ewcCu88D7nYjeE3BQ功能强大的精简型单板计算机的推出带动了一些新产品的设计,在通过小型化优化成本及效率的应用中,它的效用尤为明显。另外,视觉系统可以利用功能全面的板级机器视觉摄像头进一步缩小产品总体尺寸并实现运行灵活性,同时还支持定制或非标准光学部件。它们被用于:医疗诊断
- 智能合约漏洞检测论文
weixin_45332030
智能合约
综述TestingEthereumSmartContracts:AComparisonofSymbolicAnalysisandFuzzTestingTools符号执行与模糊测试工具的比较综述DeepLearningBasedVulnerabilityDetection:AreWeThereYet?基于深度学习的漏洞检测研究https://github.com/VulDetProject/ReVe
- 国内十大AGV厂家排行
互联网之声
人工智能大数据
国内agv机器人公司排名1.海康机器人成立时间:2016年4月20日海康机器人成立于2016年。杭州的一家机器人技术公司主要从事移动机器人、机器视觉、无人机等领域的业务。到目前为止,它还拥有许多专利产品,并一直为世界提供许多相应的产品和结局计划。2.坤厚机器人成立时间:坤厚自动化科技有限公司成立于2015年,从成立至今申请了多项发明及实用新型专利,并且拥有国内领先的AGV技术,紧密结合市场应用需求
- 什么是计算机视觉?
龙腾AI
计算机视觉人工智能自然语言处理深度学习ai
计算机视觉概述计算机视觉(ComputerVision)又称机器视觉(MachineVision),是一门让机器学会如何去“看”的学科,是深度学习技术的一个重要应用领域,被广泛应用到安防、工业质检和自动驾驶等场景。具体的说,就是让机器去识别摄像机拍摄的图片或视频中的物体,检测出物体所在的位置,并对目标物体进行跟踪,从而理解并描述出图片或视频里的场景和故事,以此来模拟人脑视觉系统。因此,计算机视觉也
- 机器学习概述与应用:深度学习、人工智能与经典学习方法
刷刷刷粉刷匠
人工智能机器学习深度学习
引言机器学习(MachineLearning)是人工智能(AI)领域中最为核心的分支之一,其主要目的是通过数据学习和构建模型,帮助计算机系统自动完成特定任务。随着深度学习(DeepLearning)的崛起,机器学习技术在各行各业中的应用变得越来越广泛。在本文中,我们将详细介绍机器学习的基础概念,包括无监督学习、有监督学习、增量学习,以及常见的回归和分类问题,并结合实际代码示例来加深理解。1.机器学
- 【现学现卖】CHEER中的概念解释——k-mer
番茄随笔
“概念理解”CHEER:HierarCHicaltaxonomicclassificationforviralmEtagEnomicdataviadeepleaRning对这篇文章中概念的理解:【现学现卖】CHEER与病毒宏基因组数据分析(1)【现学现卖】CHEER与病毒宏基因组数据分析(2)k-mer单独的k-mer很好理解,就是从一段序列中迭代分割提取长度为k的几个子序列(一般k为奇数,使用例
- 嵌入式机器视觉的流水线分拣机器人:OpenCV、 FreeRTOS、 TensorFlow(代码详解)
极客小张
机器人opencvtensorflowstm32系统架构计算机视觉物联网
一、项目概述在现代自动化生产中,分拣机器人作为提高生产效率和准确度的重要工具,正逐渐成为工业流水线的核心组成部分。本项目旨在设计一款基于嵌入式机器视觉的流水线分拣机器人,通过高效的图像处理与实时控制技术,实现对物品的快速识别与自动分拣。该项目的主要目标包括:提高分拣精度:通过高效的机器视觉算法,确保机器人能够准确识别不同类型的物品。提升作业效率:利用实时操作系统和嵌入式AI推理引擎,实现快速响应与
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理