- 基于大模型的Text2SQL微调的实战教程(二)
herosunly
AIGCText2SQL微调实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了基于大模型的Text2SQL微调的实战教程(二),希望对学习大语言模型的
- 开启AI开发新时代——全解析Dify开源LLM应用开发平台
gs80140
AI人工智能开源
开启AI开发新时代——全解析Dify开源LLM应用开发平台在人工智能迅速发展的今天,如何快速将创意转化为高效可用的应用成为开发者亟待解决的问题。Dify作为一款开源的LLM应用开发平台,以其直观的界面和强大的功能组合(包括agenticAI工作流、RAG流水线、agent能力、模型管理、可观测性等),让从原型设计到生产部署的过程变得简单而高效。本文将带你全面了解Dify的优势、核心功能、快速上手指
- Pytorch实现之利用普通GAN的人脸修复
这张生成的图像能检测吗
优质GAN模型训练自己的数据集GAN系列pytorch生成对抗网络人工智能神经网络深度学习计算机视觉python
简介简介:利用遮挡真实样本的部分面貌,输入给生成器,让生成器输出未被遮挡的面貌,以达到修复人脸的效果。论文题目:FACERESTORATIONVIAGENERATIVEADVERSARIALNETWORKS(基于生成对抗网络的人脸恢复)会议:2023ThirdInternationalConferenceonSecureCyberComputingandCommunication(ICSCCC)摘
- 计算机视觉算法实战——茶园害虫识别(主页有源码)
喵了个AI
计算机视觉实战项目计算机视觉算法人工智能
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.引言茶园害虫识别是农业领域中的一个重要研究方向,旨在通过计算机视觉技术自动识别茶园中的害虫种类,从而帮助农民及时采取防治措施,减少经济损失。随着深度学习技术的快速发展,茶园害虫识别的准确性和效率得到了显著提升,为智慧农业提供了强有力的技术支持。2.当前相关算法在茶园害虫识别领域,常
- 建议收藏!华为HCIE考试内容全攻略,助你备考一臂之力!
新盟IT教育
网络网络工程师网络工程师培训HCIE培训华为认证HCIE考试
在ICT领域,华为HCIE认证的含金量不言而喻,它是众多技术从业者梦寐以求的目标。然而,想要顺利通过华为HCIE考试,深入了解考试内容是关键。今天,就来和大家详细聊聊华为HCIE考试内容,为大家的备考之路提供一些方向。新盟教育专注华为认证培训十余年为你提供认证一线资讯!华为HCIE有多个领域方向,如数据通信、云计算、安全、人工智能等,不同方向的考试内容各有侧重,但都对考生的技术能力和综合素养提出了
- 整理:开启新征程!四篇文章助力 AI,告别 “3D理解困难户”
mslion
人工智能3d大语言模型计算机视觉目标识别
近年来,人工智能的发展让大语言模型(MLLM)变得越来越强大,它们可以理解和处理文字、图片、视频等多种信息,在很多领域都有很好的应用。然而,当这些模型需要理解3D(立体)场景时,仍然面临一些困难。目前的MLLM主要是用2D图片训练出来的,也就是说,它们更擅长识别平面的信息,比如照片中的人和物体。但是,现实世界是三维的(3D),仅靠2D图片训练的模型很难准确理解物体的立体关系。例如,如果只给一个普通
- RAG(检索增强生成)系统实践与调优
python_知世
android金融自然语言处理大模型技术人工智能RAG大模型
在人工智能领域,检索增强生成(RetrievalAugmentedGeneration,RAG)是一种结合信息检索和生成式人工智能的技术,它通过从外部数据源中检索相关信息,来辅助大语言模型(LargeLanguageModel,LLM)生成更为准确、上下文相关的答案。1什么是RAG检索增强生成(RetrievalAugmentedGeneration,RAG)是一种结合信息检索和生成式人工智能的技
- 不同用户群体设计的Manus试用申请理由模板
xinxiyinhe
人工智能人工智能
注:仅供参考。以下是为不同用户群体设计的Manus试用申请理由模板,结合其核心功能与官方审核偏好撰写,可根据自身需求调整使用:模板1:学术研究场景申请理由:我目前从事人工智能与产业经济交叉领域的博士后研究,亟需通过AI技术快速处理大量非结构化数据(如政策文件、企业年报、行业研报)。Manus的「多智能体调度」与「跨平台工具调用」功能能显著提升研究效率,例如:自动化筛选并分析1000+份上市公司ES
- DeepSeek对于普通打工人来说有什么帮助呢?
人工智能
在当今快速变化的社会中,普通打工人面临着越来越多的挑战:职场竞争加剧、技能更新换代加快、工作与生活的平衡难以掌控等。在这样的背景下,如何提升自身竞争力、找到适合自己的职业发展路径,成为了每个打工人都需要思考的问题。而DeepSeek,作为一款基于人工智能和大数据分析的职业发展工具,正在为普通打工人提供全新的解决方案。本文将从多个角度探讨DeepSeek对于普通打工人的帮助,分析它如何通过职业规划、
- 训练大模型LLM选择哪种开发语言最好
大0马浓
人工智能训练python
训练大型语言模型(LLM)时,选择合适的编程语言主要取决于效率、生态支持、开发便利性以及特定需求(如性能优化或硬件适配)。以下是常见语言的分析和推荐:---1.Python(首选语言)优势:-生态系统丰富:主流深度学习框架(PyTorch、TensorFlow、JAX)均以Python为主要接口,提供完整的工具链(数据处理、模型训练、评估部署)。-开发效率高:语法简洁,适合快速实验和原型开发,社区
- 豆包AI:打破智能边界,开启“人人可编程”的AI普惠时代
Herbig
AI人工智能
在人工智能技术狂飙突进的2024年,全球AI工具用户已突破12亿,但企业AI落地率仍不足35%——高昂的开发成本、复杂的技术门槛与碎片化的场景需求,如同三重枷锁禁锢着智能革命的红利释放。当大多数AI平台还在比拼模型参数时,豆包AI以“零代码交互+多模态引擎+垂直场景精调”的创新架构,正在重塑人机协作的范式。这款由字节跳动火山引擎团队打造的智能平台,不仅让AI开发效率提升400%,更在医疗、教育、工
- 动手深度学习笔记(二十九)5.5. 读写文件
落花逐流水
pytorch实践pytorchpytorch
动手深度学习笔记(二十九)5.5.读写文件5.深度学习计算5.5.读写文件5.5.1.加载和保存张量5.5.2.加载和保存模型参数5.5.3.小结5.5.4.练习5.深度学习计算5.5.读写文件到目前为止,我们讨论了如何处理数据,以及如何构建、训练和测试深度学习模型。然而,有时我们希望保存训练的模型,以备将来在各种环境中使用(比如在部署中进行预测)。此外,当运行一个耗时较长的训练过程时,最佳的做法
- 【深度学习】从全连接层到卷积
熙曦Sakura
深度学习深度学习人工智能
从全连接层到卷积我们之前讨论的多层感知机十分适合处理表格数据,其中行对应样本,列对应特征。对于表格数据,我们寻找的模式可能涉及特征之间的交互,但是我们不能预先假设任何与特征交互相关的先验结构。此时,多层感知机可能是最好的选择,然而对于高维感知数据,这种缺少结构的网络可能会变得不实用。例如,在之前猫狗分类的例子中:假设我们有一个足够充分的照片数据集,数据集中是拥有标注的照片,每张照片具有百万级像素,
- 【深度学习】微积分
熙曦Sakura
深度学习深度学习人工智能
微积分在2500年前,古希腊人把一个多边形分成三角形,并把它们的面积相加,才找到计算多边形面积的方法。为了求出曲线形状(比如圆)的面积,古希腊人在这样的形状上刻内接多边形。如图2.4.1所示,内接多边形的等长边越多,就越接近圆。这个过程也被称为逼近法(methodofexhaustion)。事实上,逼近法就是积分(integralcalculus)的起源。2000多年后,微积分的另一支,微分(di
- iOS 18 系统功能解析目录
蓝鲸忘了海
IOS1-18系统功能解析ioscocoamacos
iOS18系统功能解析目录iOS18系统功能解析引言第一部分:iOS18系统架构全解析1.1全新系统设计理念1.2核心架构与硬件协同1.3安全架构与隐私保护1.4跨平台生态协同第二部分:用户界面与交互体验的革新2.1全新视觉设计2.2自定义UI与多任务切换2.3通知中心与交互体验2.4动态交互动画与手势识别第三部分:人工智能与机器学习的深度整合3.1新一代智能助手3.2CoreML与机器学习框架进
- PyTorch分布式训练
阳光明媚大男孩
pytorch分布式人工智能
本文结构:分布式训练概述环境设置数据并行(DDP)模型并行启动训练性能优化建议示例代码参考资料和相关问题以下是为您整理的PyTorch分布式训练教程指南:一、PyTorch分布式训练核心概念数据并行:通过分割数据集实现多GPU并行训练,主流方法包括:DistributedDataParallel(DDP):官方推荐的分布式训练接口DataParallel(DP):单机多卡方案(已逐步被DDP取代)
- Chebykan wx 文章阅读
やっはろ
深度学习
文献筛选[1]神经网络:全面基础[2]通过sigmoid函数的超层叠近似[3]多层前馈网络是通用近似器[5]注意力是你所需要的[6]深度残差学习用于图像识别[7]视觉化神经网络的损失景观[8]牙齿模具点云补全通过数据增强和混合RL-GAN[9]强化学习:一项调查[10]使用PySR和SymbolicRegression.jl的科学可解释机器学习[11]Z.Liu,Y.Wang,S.Vaidya,F
- 人工智能AI通用分级标准方法
魔王阿卡纳兹
IT杂谈人工智能通用分级分类标准
人工智能(AI)的通用分级标准在近年来得到了广泛关注和研究,不同的机构和组织提出了多种分级框架,以帮助理解和评估AI的发展水平。以下是对人工智能通用分级标准的详细分析:1.OpenAI的五级分级标准OpenAI于2024年7月发布了通用人工智能(AGI)的五级分级标准,旨在追踪大型语言模型在AGI方面的进展。具体分级如下:第一级:聊天机器人具备语言对话能力的人工智能,如ChatGPT,能够进行基本
- LeNet-5卷积神经网络详解
LChuck
深度学习人工智能神经网络深度学习数据结构计算机视觉AIGC
LeNet-5卷积神经网络详解1.历史背景LeNet-5是由YannLeCun等人在1998年提出的一种卷积神经网络架构,是深度学习领域的一个重要里程碑。这个网络最初是为了解决手写数字识别问题而设计的,在当时取得了突破性的成果。它的成功不仅证明了卷积神经网络在计算机视觉任务中的有效性,更为后来深度学习的发展奠定了重要基础。图1:LeNet-5网络结构示意图2.网络结构LeNet-5的结构非常优雅且
- 基于yolov11的瓶盖缺陷检测系统python源码+pytorch模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLOpytorch人工智能
【算法介绍】基于YOLOv11的瓶盖缺陷检测系统在现代制造业中,瓶盖的质量直接影响到产品的封装效果和消费者的使用体验。因此,对瓶盖进行快速、准确的缺陷检测至关重要。基于YOLOv11(YouOnlyLookOnceversion11)的瓶盖缺陷检测系统应运而生,为瓶盖质量监控提供了一种高效、智能的解决方案。该系统采用YOLOv11作为核心检测算法,这一算法融合了先进的深度学习技术和创新的网络架构,
- 【Python】构建智能语音助手:使用Python实现语音识别与合成的全面指南
蒙娜丽宁
Python杂谈python语音识别开发语言
随着人工智能技术的迅猛发展,语音助手已成为人们日常生活中不可或缺的一部分。从智能手机到智能家居设备,语音交互提供了便捷高效的人机交互方式。本文旨在全面介绍如何利用Python编程语言及其强大的库——SpeechRecognition和gTTS,构建一个基础但功能完备的语音助手。文章首先概述了语音识别与合成的基本原理和关键技术,随后详细讲解了如何安装和配置必要的开发环境。通过丰富的代码示例和详细的中
- 论文阅读笔记:Graph Matching Networks for Learning the Similarity of Graph Structured Objects
游离态GLZ不可能是金融技术宅
知识图谱机器学习深度学习人工智能
论文做的是用于图匹配的神经网络研究,作者做出了两点贡献:证明GNN可以经过训练,产生嵌入graph-leve的向量可以用于相似性计算。作者提出了一种新的基于注意力的跨图匹配机制GMN(cross-graphattention-basedmatchingmechanism),来计算出一对图之间的相似度评分。(核心创新点)论文证明了该模型在不同领域的有效性,包括具有挑战性的基于控制流图(control
- 智慧农业平台与 DeepSeek 大模型的深度融合
jingwang-cs
人工智能后端
在数字化浪潮席卷全球的今天,农业领域正迎来一场深刻的变革。智慧农业,作为农业现代化的重要发展方向,正借助人工智能、大数据等前沿技术,实现从传统到现代的跨越。本文将为您详细介绍智慧农业领域的新趋势,以及智慧农业平台如何携手DeepSeek大模型,赋能农业数字化转型,引领农业迈向新时代。智慧农业的新趋势:拥抱DeepSeek大模型智慧农业的发展离不开技术创新的推动。近期,DeepSeek大模型在农业领
- 医院DEEPSEEK辅助应用
cainiaojunshi
智慧城市
一、背景介绍1.1国家政策支持《卫生健康行业人工智能应用场景参考指引》《“十四五”全民健康信息化规划》《关于进一步完善医疗卫生服务体系的意见》的发布。明确了84个AI在医疗健康领域的应用场景,涵盖了预防、诊断、治疗、康复等全流程。涉及医疗服务管理、基层公卫服务、健康产业发展以及医学教学科研等多个关键领域。国家层面明确将人工智能作为医疗领域新质生产力的核心驱动力,推动AI与临床诊疗、医院管理深度融
- 深度解析:Deepseek与Manus的根本区别——大模型与AI智能体的深度对比
火山说数
AI数字化人工智能AIAgent数字化ManusDeepseek
在人工智能领域,随着技术的发展,出现了许多强大的工具和系统。Deepseek和Manus便是其中两个广泛受到关注的系统,它们各自代表了人工智能发展的两条不同路径。一个侧重于“大脑”的建设,另一个则强调“手脚”的行动。虽然这两者都与智能技术息息相关,但它们的核心功能和应用场景却有着本质的不同。一、Deepseek:强大的“大脑”,但缺乏行动能力1.1什么是Deepseek?Deepseek是基于大规
- 开发ai模型最佳的系统是Ubuntu还是linux?
俺足
人工智能ubuntu
在AI/ML开发中,Ubuntu是更优选的Linux发行版,原因如下:1.开箱即用的AI工具链支持Ubuntu预装了主流的AI框架(如TensorFlow、PyTorch)和依赖库,且通过apt包管理器可快速部署开发环境。提供针对NVIDIAGPU的官方驱动支持,简化CUDA和cuDNN的配置流程(如nvidia-smi直接监控显存)。2.社区生态与长期维护(LTS)UbuntuLTS版本(如24
- 第二十七个问题-AI Agent 与 RAG 的核心区别
释迦呼呼
AI一千问人工智能语言模型机器学习深度学习自然语言处理
AIAgent与RAG的核心区别AIAgent(人工智能代理)与RAG(检索增强生成)是当前生成式AI领域的两个关键技术,二者在功能定位、技术架构和应用场景上存在显著差异,但也可协同互补。以下从多个维度对比分析:1.核心目标维度AIAgentRAG主要目标自主执行复杂任务(感知、决策、行动闭环)通过检索外部知识增强生成结果的准确性智能性强调自主推理、多步规划与动态调整能力依赖检索与生成的静态组合,
- vLLM 部署大语言模型的系统选择策略
由数入道
人工智能语言模型人工智能自然语言处理VLLM
核心选型原则指标权重说明CUDA支持⭐⭐⭐⭐⭐直接影响GPU加速性能,需确保系统与NVIDIA驱动和CUDA工具链的兼容性软件源时效性⭐⭐⭐⭐系统需提供较新的Python、PyTorch等AI框架版本,避免依赖冲突长期支持(LTS)⭐⭐⭐⭐生产环境需规避因系统版本过期导致的安全漏洞和兼容性问题社区生态⭐⭐⭐活跃的开发者社区能快速解决部署问题,降低运维成本企业级支持⭐⭐需要SLA保障的商业场景需考虑
- 2024-05-21 问AI: 介绍一下大语言模型的推理过程。
BigSharkTech 必杀技
用AI来理解AI人工智能语言模型自然语言处理
文心一言大语言模型的推理过程是一个复杂而精细的序列,它结合了深度学习和自然语言处理的技术,旨在理解和生成人类可以理解的自然语言文本。以下是该过程的主要步骤:输入文本的解析:当用户输入一段文本时,大语言模型首先会通过一个称为分词器的工具(tokenizer)对输入文本进行解析。分词器会将文本分解为一系列的单词或子词(tokens),并将它们转换为数字形式的序列。这些数字通常是单词在模型词典(voca
- 基于pytorch的神经病网络搭建学习
停走的风
pytorch学习学习pytorch人工智能
1.pycharm中code方法的使用1.1父类重写技巧操作:在需要重写的方法上右键,选择code-->Generate>OverrideMethods。作用:自动生成重写父类或接口的方法2.简单神经网络importtorchfromtorchimportnnclassyu(nn.Module):def__init__(self,*args,**kwargs)->None:super().__in
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分