内存分配与GC
- Go使用值传递
- 协程栈记录了协程执行现场
- 协程栈在堆上由GC回收
- 编译原理相关
逃逸分析
- 局部变量太大
- 栈帧回收后,需要继续使用的变量
- 不是所有变量读能放在协程栈上
触发逃逸的情形
- 指针逃逸
函数返回了对象的指针(函数外可以访问,变量此时不是局部变量)
func a()*int{ v := 0 return &v } func main(){ i := a() }
- 空接口逃逸
func b()*int{ v := 0 // interface{}类型的函数往往会使用反射 fmt.Println(v) } func main(){ i := a() }
- 大变量逃逸
变量过大会导致栈空间不足,64位,一般超过64KB的变量会逃逸
栈扩容
- Go栈的初始空间为2KB
- 在函数调用前判断栈空间(morestack)
- 必要时对栈进行扩容
- 早期使用分段栈,后期使用连续栈
- 当空间不足时扩容,变为原来的2倍
- 当空间使用率不足1/4时缩容,变为原来的1/2
/*
* support for morestack
*/
// Called during function prolog when more stack is needed.
//
// The traceback routines see morestack on a g0 as being
// the top of a stack (for example, morestack calling newstack
// calling the scheduler calling newm calling gc), so we must
// record an argument size. For that purpose, it has no arguments.
TEXT runtime·morestack(SB),NOSPLIT,$0-0
// Cannot grow scheduler stack (m->g0).
get_tls(CX)
MOVQ g(CX), BX
MOVQ g_m(BX), BX
MOVQ m_g0(BX), SI
CMPQ g(CX), SI
JNE 3(PC)
CALL runtime·badmorestackg0(SB)
CALL runtime·abort(SB)
// Cannot grow signal stack (m->gsignal).
MOVQ m_gsignal(BX), SI
CMPQ g(CX), SI
JNE 3(PC)
CALL runtime·badmorestackgsignal(SB)
CALL runtime·abort(SB)
// Called from f.
// Set m->morebuf to f's caller.
NOP SP // tell vet SP changed - stop checking offsets
MOVQ 8(SP), AX // f's caller's PC
MOVQ AX, (m_morebuf+gobuf_pc)(BX)
LEAQ 16(SP), AX // f's caller's SP
MOVQ AX, (m_morebuf+gobuf_sp)(BX)
get_tls(CX)
MOVQ g(CX), SI
MOVQ SI, (m_morebuf+gobuf_g)(BX)
// Set g->sched to context in f.
MOVQ 0(SP), AX // f's PC
MOVQ AX, (g_sched+gobuf_pc)(SI)
LEAQ 8(SP), AX // f's SP
MOVQ AX, (g_sched+gobuf_sp)(SI)
MOVQ BP, (g_sched+gobuf_bp)(SI)
MOVQ DX, (g_sched+gobuf_ctxt)(SI)
// Call newstack on m->g0's stack.
MOVQ m_g0(BX), BX
MOVQ BX, g(CX)
MOVQ (g_sched+gobuf_sp)(BX), SP
CALL runtime·newstack(SB)
CALL runtime·abort(SB) // crash if newstack returns
RET
heapArena
- Go每次申请的虚拟内存单元为64MB
- 最多有20^20个虚拟内存单元
- 所有的heapArena组成了mheap(Go堆内存)
// A heapArena stores metadata for a heap arena. heapArenas are stored
// outside of the Go heap and accessed via the mheap_.arenas index.
//
//go:notinheap
// 申请的信息
type heapArena struct {
// bitmap stores the pointer/scalar bitmap for the words in
// this arena. See mbitmap.go for a description. Use the
// heapBits type to access this.
bitmap [heapArenaBitmapBytes]byte
// spans maps from virtual address page ID within this arena to *mspan.
// For allocated spans, their pages map to the span itself.
// For free spans, only the lowest and highest pages map to the span itself.
// Internal pages map to an arbitrary span.
// For pages that have never been allocated, spans entries are nil.
//
// Modifications are protected by mheap.lock. Reads can be
// performed without locking, but ONLY from indexes that are
// known to contain in-use or stack spans. This means there
// must not be a safe-point between establishing that an
// address is live and looking it up in the spans array.
// 记录mspan
spans [pagesPerArena]*mspan
// pageInUse is a bitmap that indicates which spans are in
// state mSpanInUse. This bitmap is indexed by page number,
// but only the bit corresponding to the first page in each
// span is used.
//
// Reads and writes are atomic.
pageInUse [pagesPerArena / 8]uint8
// pageMarks is a bitmap that indicates which spans have any
// marked objects on them. Like pageInUse, only the bit
// corresponding to the first page in each span is used.
//
// Writes are done atomically during marking. Reads are
// non-atomic and lock-free since they only occur during
// sweeping (and hence never race with writes).
//
// This is used to quickly find whole spans that can be freed.
//
// TODO(austin): It would be nice if this was uint64 for
// faster scanning, but we don't have 64-bit atomic bit
// operations.
pageMarks [pagesPerArena / 8]uint8
// pageSpecials is a bitmap that indicates which spans have
// specials (finalizers or other). Like pageInUse, only the bit
// corresponding to the first page in each span is used.
//
// Writes are done atomically whenever a special is added to
// a span and whenever the last special is removed from a span.
// Reads are done atomically to find spans containing specials
// during marking.
pageSpecials [pagesPerArena / 8]uint8
// checkmarks stores the debug.gccheckmark state. It is only
// used if debug.gccheckmark > 0.
checkmarks *checkmarksMap
// zeroedBase marks the first byte of the first page in this
// arena which hasn't been used yet and is therefore already
// zero. zeroedBase is relative to the arena base.
// Increases monotonically until it hits heapArenaBytes.
//
// This field is sufficient to determine if an allocation
// needs to be zeroed because the page allocator follows an
// address-ordered first-fit policy.
//
// Read atomically and written with an atomic CAS.
zeroedBase uintptr
}
type mheap struct {
// lock must only be acquired on the system stack, otherwise a g
// could self-deadlock if its stack grows with the lock held.
lock mutex
pages pageAlloc // page allocation data structure
sweepgen uint32 // sweep generation, see comment in mspan; written during STW
// allspans is a slice of all mspans ever created. Each mspan
// appears exactly once.
//
// The memory for allspans is manually managed and can be
// reallocated and move as the heap grows.
//
// In general, allspans is protected by mheap_.lock, which
// prevents concurrent access as well as freeing the backing
// store. Accesses during STW might not hold the lock, but
// must ensure that allocation cannot happen around the
// access (since that may free the backing store).
allspans []*mspan // all spans out there
// _ uint32 // align uint64 fields on 32-bit for atomics
// Proportional sweep
//
// These parameters represent a linear function from gcController.heapLive
// to page sweep count. The proportional sweep system works to
// stay in the black by keeping the current page sweep count
// above this line at the current gcController.heapLive.
//
// The line has slope sweepPagesPerByte and passes through a
// basis point at (sweepHeapLiveBasis, pagesSweptBasis). At
// any given time, the system is at (gcController.heapLive,
// pagesSwept) in this space.
//
// It is important that the line pass through a point we
// control rather than simply starting at a 0,0 origin
// because that lets us adjust sweep pacing at any time while
// accounting for current progress. If we could only adjust
// the slope, it would create a discontinuity in debt if any
// progress has already been made.
pagesInUse atomic.Uint64 // pages of spans in stats mSpanInUse
pagesSwept atomic.Uint64 // pages swept this cycle
pagesSweptBasis atomic.Uint64 // pagesSwept to use as the origin of the sweep ratio
sweepHeapLiveBasis uint64 // value of gcController.heapLive to use as the origin of sweep ratio; written with lock, read without
sweepPagesPerByte float64 // proportional sweep ratio; written with lock, read without
// TODO(austin): pagesInUse should be a uintptr, but the 386
// compiler can't 8-byte align fields.
// scavengeGoal is the amount of total retained heap memory (measured by
// heapRetained) that the runtime will try to maintain by returning memory
// to the OS.
//
// Accessed atomically.
scavengeGoal uint64
// Page reclaimer state
// reclaimIndex is the page index in allArenas of next page to
// reclaim. Specifically, it refers to page (i %
// pagesPerArena) of arena allArenas[i / pagesPerArena].
//
// If this is >= 1<<63, the page reclaimer is done scanning
// the page marks.
reclaimIndex atomic.Uint64
// reclaimCredit is spare credit for extra pages swept. Since
// the page reclaimer works in large chunks, it may reclaim
// more than requested. Any spare pages released go to this
// credit pool.
reclaimCredit atomic.Uintptr
// arenas is the heap arena map. It points to the metadata for
// the heap for every arena frame of the entire usable virtual
// address space.
//
// Use arenaIndex to compute indexes into this array.
//
// For regions of the address space that are not backed by the
// Go heap, the arena map contains nil.
//
// Modifications are protected by mheap_.lock. Reads can be
// performed without locking; however, a given entry can
// transition from nil to non-nil at any time when the lock
// isn't held. (Entries never transitions back to nil.)
//
// In general, this is a two-level mapping consisting of an L1
// map and possibly many L2 maps. This saves space when there
// are a huge number of arena frames. However, on many
// platforms (even 64-bit), arenaL1Bits is 0, making this
// effectively a single-level map. In this case, arenas[0]
// will never be nil.
// 堆由所有heapArena组成
arenas [1 << arenaL1Bits]*[1 << arenaL2Bits]*heapArena
// heapArenaAlloc is pre-reserved space for allocating heapArena
// objects. This is only used on 32-bit, where we pre-reserve
// this space to avoid interleaving it with the heap itself.
heapArenaAlloc linearAlloc
// arenaHints is a list of addresses at which to attempt to
// add more heap arenas. This is initially populated with a
// set of general hint addresses, and grown with the bounds of
// actual heap arena ranges.
arenaHints *arenaHint
// arena is a pre-reserved space for allocating heap arenas
// (the actual arenas). This is only used on 32-bit.
arena linearAlloc
// allArenas is the arenaIndex of every mapped arena. This can
// be used to iterate through the address space.
//
// Access is protected by mheap_.lock. However, since this is
// append-only and old backing arrays are never freed, it is
// safe to acquire mheap_.lock, copy the slice header, and
// then release mheap_.lock.
allArenas []arenaIdx
// sweepArenas is a snapshot of allArenas taken at the
// beginning of the sweep cycle. This can be read safely by
// simply blocking GC (by disabling preemption).
sweepArenas []arenaIdx
// markArenas is a snapshot of allArenas taken at the beginning
// of the mark cycle. Because allArenas is append-only, neither
// this slice nor its contents will change during the mark, so
// it can be read safely.
markArenas []arenaIdx
// curArena is the arena that the heap is currently growing
// into. This should always be physPageSize-aligned.
curArena struct {
base, end uintptr
}
_ uint32 // ensure 64-bit alignment of central
// central free lists for small size classes.
// the padding makes sure that the mcentrals are
// spaced CacheLinePadSize bytes apart, so that each mcentral.lock
// gets its own cache line.
// central is indexed by spanClass.
// 136个
central [numSpanClasses]struct {
mcentral mcentral
pad [cpu.CacheLinePadSize - unsafe.Sizeof(mcentral{})%cpu.CacheLinePadSize]byte
}
spanalloc fixalloc // allocator for span*
cachealloc fixalloc // allocator for mcache*
specialfinalizeralloc fixalloc // allocator for specialfinalizer*
specialprofilealloc fixalloc // allocator for specialprofile*
specialReachableAlloc fixalloc // allocator for specialReachable
speciallock mutex // lock for special record allocators.
arenaHintAlloc fixalloc // allocator for arenaHints
unused *specialfinalizer // never set, just here to force the specialfinalizer type into DWARF
}
分配
- 线性分配
- 空闲链表分配
线性分配与空闲链表分配会产生碎片
- 分级分配
内存管理单元mspan
- 根据隔离适应策略,使用内存时最小单位为mspan
- 每个mspan是N个相同的小格子
- 67个mspan
// class bytes/obj bytes/span objects tail waste max waste min align
// 1 8 8192 1024 0 87.50% 8
// 2 16 8192 512 0 43.75% 16
// 3 24 8192 341 8 29.24% 8
// 4 32 8192 256 0 21.88% 32
// 5 48 8192 170 32 31.52% 16
// 6 64 8192 128 0 23.44% 64
// 7 80 8192 102 32 19.07% 16
// 8 96 8192 85 32 15.95% 32
// 9 112 8192 73 16 13.56% 16
// 10 128 8192 64 0 11.72% 128
// 11 144 8192 56 128 11.82% 16
// 12 160 8192 51 32 9.73% 32
// 13 176 8192 46 96 9.59% 16
// 14 192 8192 42 128 9.25% 64
// 15 208 8192 39 80 8.12% 16
// 16 224 8192 36 128 8.15% 32
// 17 240 8192 34 32 6.62% 16
// 18 256 8192 32 0 5.86% 256
// 19 288 8192 28 128 12.16% 32
// 20 320 8192 25 192 11.80% 64
// 21 352 8192 23 96 9.88% 32
// 22 384 8192 21 128 9.51% 128
// 23 416 8192 19 288 10.71% 32
// 24 448 8192 18 128 8.37% 64
// 25 480 8192 17 32 6.82% 32
// 26 512 8192 16 0 6.05% 512
// 27 576 8192 14 128 12.33% 64
// 28 640 8192 12 512 15.48% 128
// 29 704 8192 11 448 13.93% 64
// 30 768 8192 10 512 13.94% 256
// 31 896 8192 9 128 15.52% 128
// 32 1024 8192 8 0 12.40% 1024
// 33 1152 8192 7 128 12.41% 128
// 34 1280 8192 6 512 15.55% 256
// 35 1408 16384 11 896 14.00% 128
// 36 1536 8192 5 512 14.00% 512
// 37 1792 16384 9 256 15.57% 256
// 38 2048 8192 4 0 12.45% 2048
// 39 2304 16384 7 256 12.46% 256
// 40 2688 8192 3 128 15.59% 128
// 41 3072 24576 8 0 12.47% 1024
// 42 3200 16384 5 384 6.22% 128
// 43 3456 24576 7 384 8.83% 128
// 44 4096 8192 2 0 15.60% 4096
// 45 4864 24576 5 256 16.65% 256
// 46 5376 16384 3 256 10.92% 256
// 47 6144 24576 4 0 12.48% 2048
// 48 6528 32768 5 128 6.23% 128
// 49 6784 40960 6 256 4.36% 128
// 50 6912 49152 7 768 3.37% 256
// 51 8192 8192 1 0 15.61% 8192
// 52 9472 57344 6 512 14.28% 256
// 53 9728 49152 5 512 3.64% 512
// 54 10240 40960 4 0 4.99% 2048
// 55 10880 32768 3 128 6.24% 128
// 56 12288 24576 2 0 11.45% 4096
// 57 13568 40960 3 256 9.99% 256
// 58 14336 57344 4 0 5.35% 2048
// 59 16384 16384 1 0 12.49% 8192
// 60 18432 73728 4 0 11.11% 2048
// 61 19072 57344 3 128 3.57% 128
// 62 20480 40960 2 0 6.87% 4096
// 63 21760 65536 3 256 6.25% 256
// 64 24576 24576 1 0 11.45% 8192
// 65 27264 81920 3 128 10.00% 128
// 66 28672 57344 2 0 4.91% 4096
// 67 32768 32768 1 0 12.50% 8192
// alignment bits min obj size
// 8 3 8
// 16 4 32
// 32 5 256
// 64 6 512
// 128 7 768
// 4096 12 28672
// 8192 13 32768
//go:notinheap
type mspan struct {
next *mspan // next span in list, or nil if none
prev *mspan // previous span in list, or nil if none
list *mSpanList // For debugging. TODO: Remove.
startAddr uintptr // address of first byte of span aka s.base()
npages uintptr // number of pages in span
manualFreeList gclinkptr // list of free objects in mSpanManual spans
// freeindex is the slot index between 0 and nelems at which to begin scanning
// for the next free object in this span.
// Each allocation scans allocBits starting at freeindex until it encounters a 0
// indicating a free object. freeindex is then adjusted so that subsequent scans begin
// just past the newly discovered free object.
//
// If freeindex == nelem, this span has no free objects.
//
// allocBits is a bitmap of objects in this span.
// If n >= freeindex and allocBits[n/8] & (1<<(n%8)) is 0
// then object n is free;
// otherwise, object n is allocated. Bits starting at nelem are
// undefined and should never be referenced.
//
// Object n starts at address n*elemsize + (start << pageShift).
freeindex uintptr
// TODO: Look up nelems from sizeclass and remove this field if it
// helps performance.
nelems uintptr // number of object in the span.
// Cache of the allocBits at freeindex. allocCache is shifted
// such that the lowest bit corresponds to the bit freeindex.
// allocCache holds the complement of allocBits, thus allowing
// ctz (count trailing zero) to use it directly.
// allocCache may contain bits beyond s.nelems; the caller must ignore
// these.
allocCache uint64
// allocBits and gcmarkBits hold pointers to a span's mark and
// allocation bits. The pointers are 8 byte aligned.
// There are three arenas where this data is held.
// free: Dirty arenas that are no longer accessed
// and can be reused.
// next: Holds information to be used in the next GC cycle.
// current: Information being used during this GC cycle.
// previous: Information being used during the last GC cycle.
// A new GC cycle starts with the call to finishsweep_m.
// finishsweep_m moves the previous arena to the free arena,
// the current arena to the previous arena, and
// the next arena to the current arena.
// The next arena is populated as the spans request
// memory to hold gcmarkBits for the next GC cycle as well
// as allocBits for newly allocated spans.
//
// The pointer arithmetic is done "by hand" instead of using
// arrays to avoid bounds checks along critical performance
// paths.
// The sweep will free the old allocBits and set allocBits to the
// gcmarkBits. The gcmarkBits are replaced with a fresh zeroed
// out memory.
allocBits *gcBits
gcmarkBits *gcBits
// sweep generation:
// if sweepgen == h->sweepgen - 2, the span needs sweeping
// if sweepgen == h->sweepgen - 1, the span is currently being swept
// if sweepgen == h->sweepgen, the span is swept and ready to use
// if sweepgen == h->sweepgen + 1, the span was cached before sweep began and is still cached, and needs sweeping
// if sweepgen == h->sweepgen + 3, the span was swept and then cached and is still cached
// h->sweepgen is incremented by 2 after every GC
sweepgen uint32
divMul uint32 // for divide by elemsize
allocCount uint16 // number of allocated objects
spanclass spanClass // size class and noscan (uint8)
state mSpanStateBox // mSpanInUse etc; accessed atomically (get/set methods)
needzero uint8 // needs to be zeroed before allocation
elemsize uintptr // computed from sizeclass or from npages
limit uintptr // end of data in span
speciallock mutex // guards specials list
specials *special // linked list of special records sorted by offset.
}
每个heapArena中的mspan都不确定
中心索引 mcentral
136个
68个不需要GC扫描,68需要GC扫描
// 给定大小的空闲对象的中央列表
// Central list of free objects of a given size.
//
//go:notinheap
// 保存相同mspan的目录
type mcentral struct {
spanclass spanClass
// partial and full contain two mspan sets: one of swept in-use
// spans, and one of unswept in-use spans. These two trade
// roles on each GC cycle. The unswept set is drained either by
// allocation or by the background sweeper in every GC cycle,
// so only two roles are necessary.
//
// sweepgen is increased by 2 on each GC cycle, so the swept
// spans are in partial[sweepgen/2%2] and the unswept spans are in
// partial[1-sweepgen/2%2]. Sweeping pops spans from the
// unswept set and pushes spans that are still in-use on the
// swept set. Likewise, allocating an in-use span pushes it
// on the swept set.
//
// Some parts of the sweeper can sweep arbitrary spans, and hence
// can't remove them from the unswept set, but will add the span
// to the appropriate swept list. As a result, the parts of the
// sweeper and mcentral that do consume from the unswept list may
// encounter swept spans, and these should be ignored.
partial [2]spanSet // list of spans with a free object
full [2]spanSet // list of spans with no free objects
}
协程缓存 mcache
- 每个P有一个mcache
// Per-thread (in Go, per-P) cache for small objects.
// This includes a small object cache and local allocation stats.
// No locking needed because it is per-thread (per-P).
//
// mcaches are allocated from non-GC'd memory, so any heap pointers
// must be specially handled.
//
//go:notinheap
type mcache struct {
// The following members are accessed on every malloc,
// so they are grouped here for better caching.
nextSample uintptr // trigger heap sample after allocating this many bytes
scanAlloc uintptr // bytes of scannable heap allocated
// Allocator cache for tiny objects w/o pointers.
// See "Tiny allocator" comment in malloc.go.
// tiny points to the beginning of the current tiny block, or
// nil if there is no current tiny block.
//
// tiny is a heap pointer. Since mcache is in non-GC'd memory,
// we handle it by clearing it in releaseAll during mark
// termination.
//
// tinyAllocs is the number of tiny allocations performed
// by the P that owns this mcache.
tiny uintptr
tinyoffset uintptr
tinyAllocs uintptr
// The rest is not accessed on every malloc.
alloc [numSpanClasses]*mspan // spans to allocate from, indexed by spanClass
stackcache [_NumStackOrders]stackfreelist
// flushGen indicates the sweepgen during which this mcache
// was last flushed. If flushGen != mheap_.sweepgen, the spans
// in this mcache are stale and need to the flushed so they
// can be swept. This is done in acquirep.
flushGen uint32
}
type p struct {
...
// 本地mache
mcache *mcache
...
}
分配堆内存
对象分级
- Tiny微对象(0,16B)无指针
- Small小对象[16B,32KB]
- Large大对象(32KB,正无穷大)
微小对象分配至普通mspan,大对象分配到0级mspan(量身定做mspan)
微对象分配
- 从mcache拿到
2级mspan
- 将多个微对象合并成一个16Byte存入
// Allocate an object of size bytes.
// Small objects are allocated from the per-P cache's free lists.
// Large objects (> 32 kB) are allocated straight from the heap.
// 小对象是从 per-P 缓存的空闲列表中分配的。
// 大对象 (> 32 kB) 直接从堆中分配。
func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
if gcphase == _GCmarktermination {
throw("mallocgc called with gcphase == _GCmarktermination")
}
if size == 0 {
return unsafe.Pointer(&zerobase)
}
userSize := size
if asanenabled {
// Refer to ASAN runtime library, the malloc() function allocates extra memory,
// the redzone, around the user requested memory region. And the redzones are marked
// as unaddressable. We perform the same operations in Go to detect the overflows or
// underflows.
size += computeRZlog(size)
}
if debug.malloc {
if debug.sbrk != 0 {
align := uintptr(16)
if typ != nil {
// TODO(austin): This should be just
// align = uintptr(typ.align)
// but that's only 4 on 32-bit platforms,
// even if there's a uint64 field in typ (see #599).
// This causes 64-bit atomic accesses to panic.
// Hence, we use stricter alignment that matches
// the normal allocator better.
if size&7 == 0 {
align = 8
} else if size&3 == 0 {
align = 4
} else if size&1 == 0 {
align = 2
} else {
align = 1
}
}
return persistentalloc(size, align, &memstats.other_sys)
}
if inittrace.active && inittrace.id == getg().goid {
// Init functions are executed sequentially in a single goroutine.
inittrace.allocs += 1
}
}
// assistG is the G to charge for this allocation, or nil if
// GC is not currently active.
var assistG *g
if gcBlackenEnabled != 0 {
// Charge the current user G for this allocation.
assistG = getg()
if assistG.m.curg != nil {
assistG = assistG.m.curg
}
// Charge the allocation against the G. We'll account
// for internal fragmentation at the end of mallocgc.
assistG.gcAssistBytes -= int64(size)
if assistG.gcAssistBytes < 0 {
// This G is in debt. Assist the GC to correct
// this before allocating. This must happen
// before disabling preemption.
gcAssistAlloc(assistG)
}
}
// Set mp.mallocing to keep from being preempted by GC.
mp := acquirem()
if mp.mallocing != 0 {
throw("malloc deadlock")
}
if mp.gsignal == getg() {
throw("malloc during signal")
}
mp.mallocing = 1
shouldhelpgc := false
dataSize := userSize
c := getMCache(mp)
if c == nil {
throw("mallocgc called without a P or outside bootstrapping")
}
var span *mspan
var x unsafe.Pointer
noscan := typ == nil || typ.ptrdata == 0
// In some cases block zeroing can profitably (for latency reduction purposes)
// be delayed till preemption is possible; delayedZeroing tracks that state.
delayedZeroing := false
// <= 32KB
if size <= maxSmallSize {
// < 16B
if noscan && size < maxTinySize {
// Tiny allocator.
//
// Tiny allocator combines several tiny allocation requests
// into a single memory block. The resulting memory block
// is freed when all subobjects are unreachable. The subobjects
// must be noscan (don't have pointers), this ensures that
// the amount of potentially wasted memory is bounded.
//
// Size of the memory block used for combining (maxTinySize) is tunable.
// Current setting is 16 bytes, which relates to 2x worst case memory
// wastage (when all but one subobjects are unreachable).
// 8 bytes would result in no wastage at all, but provides less
// opportunities for combining.
// 32 bytes provides more opportunities for combining,
// but can lead to 4x worst case wastage.
// The best case winning is 8x regardless of block size.
//
// Objects obtained from tiny allocator must not be freed explicitly.
// So when an object will be freed explicitly, we ensure that
// its size >= maxTinySize.
//
// SetFinalizer has a special case for objects potentially coming
// from tiny allocator, it such case it allows to set finalizers
// for an inner byte of a memory block.
//
// The main targets of tiny allocator are small strings and
// standalone escaping variables. On a json benchmark
// the allocator reduces number of allocations by ~12% and
// reduces heap size by ~20%.
off := c.tinyoffset
// Align tiny pointer for required (conservative) alignment.
if size&7 == 0 {
off = alignUp(off, 8)
} else if goarch.PtrSize == 4 && size == 12 {
// Conservatively align 12-byte objects to 8 bytes on 32-bit
// systems so that objects whose first field is a 64-bit
// value is aligned to 8 bytes and does not cause a fault on
// atomic access. See issue 37262.
// TODO(mknyszek): Remove this workaround if/when issue 36606
// is resolved.
off = alignUp(off, 8)
} else if size&3 == 0 {
off = alignUp(off, 4)
} else if size&1 == 0 {
off = alignUp(off, 2)
}
// 该object适合现有的tiny block。
if off+size <= maxTinySize && c.tiny != 0 {
// The object fits into existing tiny block.
x = unsafe.Pointer(c.tiny + off)
c.tinyoffset = off + size
c.tinyAllocs++
mp.mallocing = 0
releasem(mp)
return x
}
// Allocate a new maxTinySize block.
// 分配一个新的maxTinySize block。
span = c.alloc[tinySpanClass]
v := nextFreeFast(span)
if v == 0 {
v, span, shouldhelpgc = c.nextFree(tinySpanClass)
}
x = unsafe.Pointer(v)
(*[2]uint64)(x)[0] = 0
(*[2]uint64)(x)[1] = 0
// See if we need to replace the existing tiny block with the new one
// based on amount of remaining free space.
if !raceenabled && (size < c.tinyoffset || c.tiny == 0) {
// Note: disabled when race detector is on, see comment near end of this function.
c.tiny = uintptr(x)
c.tinyoffset = size
}
size = maxTinySize
} else {
var sizeclass uint8
// 查表找适用的span
if size <= smallSizeMax-8 {
sizeclass = size_to_class8[divRoundUp(size, smallSizeDiv)]
} else {
sizeclass = size_to_class128[divRoundUp(size-smallSizeMax, largeSizeDiv)]
}
size = uintptr(class_to_size[sizeclass])
spc := makeSpanClass(sizeclass, noscan)
span = c.alloc[spc]
// 找到
v := nextFreeFast(span)
if v == 0 {
// 将span进行替换,全局与本地mache交换
v, span, shouldhelpgc = c.nextFree(spc)
}
x = unsafe.Pointer(v)
if needzero && span.needzero != 0 {
memclrNoHeapPointers(unsafe.Pointer(v), size)
}
}
} else {
shouldhelpgc = true
// For large allocations, keep track of zeroed state so that
// bulk zeroing can be happen later in a preemptible context.
// 定制0级span
span = c.allocLarge(size, noscan)
span.freeindex = 1
span.allocCount = 1
size = span.elemsize
x = unsafe.Pointer(span.base())
if needzero && span.needzero != 0 {
if noscan {
delayedZeroing = true
} else {
memclrNoHeapPointers(x, size)
// We've in theory cleared almost the whole span here,
// and could take the extra step of actually clearing
// the whole thing. However, don't. Any GC bits for the
// uncleared parts will be zero, and it's just going to
// be needzero = 1 once freed anyway.
}
}
}
var scanSize uintptr
if !noscan {
heapBitsSetType(uintptr(x), size, dataSize, typ)
if dataSize > typ.size {
// Array allocation. If there are any
// pointers, GC has to scan to the last
// element.
if typ.ptrdata != 0 {
scanSize = dataSize - typ.size + typ.ptrdata
}
} else {
scanSize = typ.ptrdata
}
c.scanAlloc += scanSize
}
// Ensure that the stores above that initialize x to
// type-safe memory and set the heap bits occur before
// the caller can make x observable to the garbage
// collector. Otherwise, on weakly ordered machines,
// the garbage collector could follow a pointer to x,
// but see uninitialized memory or stale heap bits.
publicationBarrier()
// Allocate black during GC.
// All slots hold nil so no scanning is needed.
// This may be racing with GC so do it atomically if there can be
// a race marking the bit.
if gcphase != _GCoff {
gcmarknewobject(span, uintptr(x), size, scanSize)
}
if raceenabled {
racemalloc(x, size)
}
if msanenabled {
msanmalloc(x, size)
}
if asanenabled {
// We should only read/write the memory with the size asked by the user.
// The rest of the allocated memory should be poisoned, so that we can report
// errors when accessing poisoned memory.
// The allocated memory is larger than required userSize, it will also include
// redzone and some other padding bytes.
rzBeg := unsafe.Add(x, userSize)
asanpoison(rzBeg, size-userSize)
asanunpoison(x, userSize)
}
if rate := MemProfileRate; rate > 0 {
// Note cache c only valid while m acquired; see #47302
if rate != 1 && size < c.nextSample {
c.nextSample -= size
} else {
profilealloc(mp, x, size)
}
}
mp.mallocing = 0
releasem(mp)
// Pointerfree data can be zeroed late in a context where preemption can occur.
// x will keep the memory alive.
if delayedZeroing {
if !noscan {
throw("delayed zeroing on data that may contain pointers")
}
memclrNoHeapPointersChunked(size, x) // This is a possible preemption point: see #47302
}
if debug.malloc {
if debug.allocfreetrace != 0 {
tracealloc(x, size, typ)
}
if inittrace.active && inittrace.id == getg().goid {
// Init functions are executed sequentially in a single goroutine.
inittrace.bytes += uint64(size)
}
}
if assistG != nil {
// Account for internal fragmentation in the assist
// debt now that we know it.
assistG.gcAssistBytes -= int64(size - dataSize)
}
if shouldhelpgc {
if t := (gcTrigger{kind: gcTriggerHeap}); t.test() {
gcStart(t)
}
}
if raceenabled && noscan && dataSize < maxTinySize {
// Pad tinysize allocations so they are aligned with the end
// of the tinyalloc region. This ensures that any arithmetic
// that goes off the top end of the object will be detectable
// by checkptr (issue 38872).
// Note that we disable tinyalloc when raceenabled for this to work.
// TODO: This padding is only performed when the race detector
// is enabled. It would be nice to enable it if any package
// was compiled with checkptr, but there's no easy way to
// detect that (especially at compile time).
// TODO: enable this padding for all allocations, not just
// tinyalloc ones. It's tricky because of pointer maps.
// Maybe just all noscan objects?
x = add(x, size-dataSize)
}
return x
}
// allocLarge allocates a span for a large object.
func (c *mcache) allocLarge(size uintptr, noscan bool) *mspan {
if size+_PageSize < size {
throw("out of memory")
}
npages := size >> _PageShift
if size&_PageMask != 0 {
npages++
}
// Deduct credit for this span allocation and sweep if
// necessary. mHeap_Alloc will also sweep npages, so this only
// pays the debt down to npage pages.
deductSweepCredit(npages*_PageSize, npages)
spc := makeSpanClass(0, noscan)
s := mheap_.alloc(npages, spc)
if s == nil {
throw("out of memory")
}
stats := memstats.heapStats.acquire()
atomic.Xadd64(&stats.largeAlloc, int64(npages*pageSize))
atomic.Xadd64(&stats.largeAllocCount, 1)
memstats.heapStats.release()
// Update heapLive.
gcController.update(int64(s.npages*pageSize), 0)
// Put the large span in the mcentral swept list so that it's
// visible to the background sweeper.
mheap_.central[spc].mcentral.fullSwept(mheap_.sweepgen).push(s)
s.limit = s.base() + size
heapBitsForAddr(s.base()).initSpan(s)
return s
}
// nextFree returns the next free object from the cached span if one is available.
// Otherwise it refills the cache with a span with an available object and
// returns that object along with a flag indicating that this was a heavy
// weight allocation. If it is a heavy weight allocation the caller must
// determine whether a new GC cycle needs to be started or if the GC is active
// whether this goroutine needs to assist the GC.
//
// Must run in a non-preemptible context since otherwise the owner of
// c could change.
func (c *mcache) nextFree(spc spanClass) (v gclinkptr, s *mspan, shouldhelpgc bool) {
s = c.alloc[spc]
shouldhelpgc = false
freeIndex := s.nextFreeIndex()
if freeIndex == s.nelems {
// The span is full.
if uintptr(s.allocCount) != s.nelems {
println("runtime: s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
throw("s.allocCount != s.nelems && freeIndex == s.nelems")
}
c.refill(spc)
shouldhelpgc = true
s = c.alloc[spc]
freeIndex = s.nextFreeIndex()
}
if freeIndex >= s.nelems {
throw("freeIndex is not valid")
}
v = gclinkptr(freeIndex*s.elemsize + s.base())
s.allocCount++
if uintptr(s.allocCount) > s.nelems {
println("s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
throw("s.allocCount > s.nelems")
}
return
}
// refill acquires a new span of span class spc for c. This span will
// have at least one free object. The current span in c must be full.
//
// Must run in a non-preemptible context since otherwise the owner of
// c could change.
func (c *mcache) refill(spc spanClass) {
// Return the current cached span to the central lists.
s := c.alloc[spc]
if uintptr(s.allocCount) != s.nelems {
throw("refill of span with free space remaining")
}
if s != &emptymspan {
// Mark this span as no longer cached.
if s.sweepgen != mheap_.sweepgen+3 {
throw("bad sweepgen in refill")
}
mheap_.central[spc].mcentral.uncacheSpan(s)
}
// Get a new cached span from the central lists.
s = mheap_.central[spc].mcentral.cacheSpan()
if s == nil {
throw("out of memory")
}
if uintptr(s.allocCount) == s.nelems {
throw("span has no free space")
}
// Indicate that this span is cached and prevent asynchronous
// sweeping in the next sweep phase.
s.sweepgen = mheap_.sweepgen + 3
// Assume all objects from this span will be allocated in the
// mcache. If it gets uncached, we'll adjust this.
stats := memstats.heapStats.acquire()
atomic.Xadd64(&stats.smallAllocCount[spc.sizeclass()], int64(s.nelems)-int64(s.allocCount))
// Flush tinyAllocs.
if spc == tinySpanClass {
atomic.Xadd64(&stats.tinyAllocCount, int64(c.tinyAllocs))
c.tinyAllocs = 0
}
memstats.heapStats.release()
// Update heapLive with the same assumption.
// While we're here, flush scanAlloc, since we have to call
// revise anyway.
usedBytes := uintptr(s.allocCount) * s.elemsize
gcController.update(int64(s.npages*pageSize)-int64(usedBytes), int64(c.scanAlloc))
c.scanAlloc = 0
c.alloc[spc] = s
}
// Allocate a span to use in an mcache.
func (c *mcentral) cacheSpan() *mspan {
// Deduct credit for this span allocation and sweep if necessary.
spanBytes := uintptr(class_to_allocnpages[c.spanclass.sizeclass()]) * _PageSize
deductSweepCredit(spanBytes, 0)
traceDone := false
if trace.enabled {
traceGCSweepStart()
}
// If we sweep spanBudget spans without finding any free
// space, just allocate a fresh span. This limits the amount
// of time we can spend trying to find free space and
// amortizes the cost of small object sweeping over the
// benefit of having a full free span to allocate from. By
// setting this to 100, we limit the space overhead to 1%.
//
// TODO(austin,mknyszek): This still has bad worst-case
// throughput. For example, this could find just one free slot
// on the 100th swept span. That limits allocation latency, but
// still has very poor throughput. We could instead keep a
// running free-to-used budget and switch to fresh span
// allocation if the budget runs low.
spanBudget := 100
var s *mspan
var sl sweepLocker
// Try partial swept spans first.
sg := mheap_.sweepgen
if s = c.partialSwept(sg).pop(); s != nil {
goto havespan
}
sl = sweep.active.begin()
if sl.valid {
// Now try partial unswept spans.
for ; spanBudget >= 0; spanBudget-- {
s = c.partialUnswept(sg).pop()
if s == nil {
break
}
if s, ok := sl.tryAcquire(s); ok {
// We got ownership of the span, so let's sweep it and use it.
s.sweep(true)
sweep.active.end(sl)
goto havespan
}
// We failed to get ownership of the span, which means it's being or
// has been swept by an asynchronous sweeper that just couldn't remove it
// from the unswept list. That sweeper took ownership of the span and
// responsibility for either freeing it to the heap or putting it on the
// right swept list. Either way, we should just ignore it (and it's unsafe
// for us to do anything else).
}
// Now try full unswept spans, sweeping them and putting them into the
// right list if we fail to get a span.
for ; spanBudget >= 0; spanBudget-- {
s = c.fullUnswept(sg).pop()
if s == nil {
break
}
if s, ok := sl.tryAcquire(s); ok {
// We got ownership of the span, so let's sweep it.
s.sweep(true)
// Check if there's any free space.
freeIndex := s.nextFreeIndex()
if freeIndex != s.nelems {
s.freeindex = freeIndex
sweep.active.end(sl)
goto havespan
}
// Add it to the swept list, because sweeping didn't give us any free space.
c.fullSwept(sg).push(s.mspan)
}
// See comment for partial unswept spans.
}
sweep.active.end(sl)
}
if trace.enabled {
traceGCSweepDone()
traceDone = true
}
// We failed to get a span from the mcentral so get one from mheap.
s = c.grow()
if s == nil {
return nil
}
// At this point s is a span that should have free slots.
havespan:
if trace.enabled && !traceDone {
traceGCSweepDone()
}
n := int(s.nelems) - int(s.allocCount)
if n == 0 || s.freeindex == s.nelems || uintptr(s.allocCount) == s.nelems {
throw("span has no free objects")
}
freeByteBase := s.freeindex &^ (64 - 1)
whichByte := freeByteBase / 8
// Init alloc bits cache.
s.refillAllocCache(whichByte)
// Adjust the allocCache so that s.freeindex corresponds to the low bit in
// s.allocCache.
s.allocCache >>= s.freeindex % 64
return s
}
// grow allocates a new empty span from the heap and initializes it for c's size class.
func (c *mcentral) grow() *mspan {
npages := uintptr(class_to_allocnpages[c.spanclass.sizeclass()])
size := uintptr(class_to_size[c.spanclass.sizeclass()])
s := mheap_.alloc(npages, c.spanclass)
if s == nil {
return nil
}
// Use division by multiplication and shifts to quickly compute:
// n := (npages << _PageShift) / size
n := s.divideByElemSize(npages << _PageShift)
s.limit = s.base() + size*n
heapBitsForAddr(s.base()).initSpan(s)
return s
}
// allocLarge allocates a span for a large object.
func (c *mcache) allocLarge(size uintptr, noscan bool) *mspan {
if size+_PageSize < size {
throw("out of memory")
}
npages := size >> _PageShift
if size&_PageMask != 0 {
npages++
}
// Deduct credit for this span allocation and sweep if
// necessary. mHeap_Alloc will also sweep npages, so this only
// pays the debt down to npage pages.
deductSweepCredit(npages*_PageSize, npages)
spc := makeSpanClass(0, noscan)
s := mheap_.alloc(npages, spc)
if s == nil {
throw("out of memory")
}
stats := memstats.heapStats.acquire()
atomic.Xadd64(&stats.largeAlloc, int64(npages*pageSize))
atomic.Xadd64(&stats.largeAllocCount, 1)
memstats.heapStats.release()
// Update heapLive.
gcController.update(int64(s.npages*pageSize), 0)
// Put the large span in the mcentral swept list so that it's
// visible to the background sweeper.
mheap_.central[spc].mcentral.fullSwept(mheap_.sweepgen).push(s)
s.limit = s.base() + size
heapBitsForAddr(s.base()).initSpan(s)
return s
}
// alloc allocates a new span of npage pages from the GC'd heap.
//
// spanclass indicates the span's size class and scannability.
//
// Returns a span that has been fully initialized. span.needzero indicates
// whether the span has been zeroed. Note that it may not be.
func (h *mheap) alloc(npages uintptr, spanclass spanClass) *mspan {
// Don't do any operations that lock the heap on the G stack.
// It might trigger stack growth, and the stack growth code needs
// to be able to allocate heap.
var s *mspan
systemstack(func() {
// To prevent excessive heap growth, before allocating n pages
// we need to sweep and reclaim at least n pages.
if !isSweepDone() {
h.reclaim(npages)
}
s = h.allocSpan(npages, spanAllocHeap, spanclass)
})
return s
}
// allocSpan allocates an mspan which owns npages worth of memory.
//
// If typ.manual() == false, allocSpan allocates a heap span of class spanclass
// and updates heap accounting. If manual == true, allocSpan allocates a
// manually-managed span (spanclass is ignored), and the caller is
// responsible for any accounting related to its use of the span. Either
// way, allocSpan will atomically add the bytes in the newly allocated
// span to *sysStat.
//
// The returned span is fully initialized.
//
// h.lock must not be held.
//
// allocSpan must be called on the system stack both because it acquires
// the heap lock and because it must block GC transitions.
//
//go:systemstack
func (h *mheap) allocSpan(npages uintptr, typ spanAllocType, spanclass spanClass) (s *mspan) {
// Function-global state.
gp := getg()
base, scav := uintptr(0), uintptr(0)
growth := uintptr(0)
// On some platforms we need to provide physical page aligned stack
// allocations. Where the page size is less than the physical page
// size, we already manage to do this by default.
needPhysPageAlign := physPageAlignedStacks && typ == spanAllocStack && pageSize < physPageSize
// If the allocation is small enough, try the page cache!
// The page cache does not support aligned allocations, so we cannot use
// it if we need to provide a physical page aligned stack allocation.
pp := gp.m.p.ptr()
if !needPhysPageAlign && pp != nil && npages < pageCachePages/4 {
c := &pp.pcache
// If the cache is empty, refill it.
if c.empty() {
lock(&h.lock)
*c = h.pages.allocToCache()
unlock(&h.lock)
}
// Try to allocate from the cache.
base, scav = c.alloc(npages)
if base != 0 {
s = h.tryAllocMSpan()
if s != nil {
goto HaveSpan
}
// We have a base but no mspan, so we need
// to lock the heap.
}
}
// For one reason or another, we couldn't get the
// whole job done without the heap lock.
lock(&h.lock)
if needPhysPageAlign {
// Overallocate by a physical page to allow for later alignment.
npages += physPageSize / pageSize
}
if base == 0 {
// Try to acquire a base address.
base, scav = h.pages.alloc(npages)
if base == 0 {
var ok bool
growth, ok = h.grow(npages)
if !ok {
unlock(&h.lock)
return nil
}
base, scav = h.pages.alloc(npages)
if base == 0 {
throw("grew heap, but no adequate free space found")
}
}
}
if s == nil {
// We failed to get an mspan earlier, so grab
// one now that we have the heap lock.
s = h.allocMSpanLocked()
}
if needPhysPageAlign {
allocBase, allocPages := base, npages
base = alignUp(allocBase, physPageSize)
npages -= physPageSize / pageSize
// Return memory around the aligned allocation.
spaceBefore := base - allocBase
if spaceBefore > 0 {
h.pages.free(allocBase, spaceBefore/pageSize, false)
}
spaceAfter := (allocPages-npages)*pageSize - spaceBefore
if spaceAfter > 0 {
h.pages.free(base+npages*pageSize, spaceAfter/pageSize, false)
}
}
unlock(&h.lock)
if growth > 0 {
// We just caused a heap growth, so scavenge down what will soon be used.
// By scavenging inline we deal with the failure to allocate out of
// memory fragments by scavenging the memory fragments that are least
// likely to be re-used.
scavengeGoal := atomic.Load64(&h.scavengeGoal)
if retained := heapRetained(); retained+uint64(growth) > scavengeGoal {
// The scavenging algorithm requires the heap lock to be dropped so it
// can acquire it only sparingly. This is a potentially expensive operation
// so it frees up other goroutines to allocate in the meanwhile. In fact,
// they can make use of the growth we just created.
todo := growth
if overage := uintptr(retained + uint64(growth) - scavengeGoal); todo > overage {
todo = overage
}
h.pages.scavenge(todo)
}
}
HaveSpan:
// At this point, both s != nil and base != 0, and the heap
// lock is no longer held. Initialize the span.
s.init(base, npages)
if h.allocNeedsZero(base, npages) {
s.needzero = 1
}
nbytes := npages * pageSize
if typ.manual() {
s.manualFreeList = 0
s.nelems = 0
s.limit = s.base() + s.npages*pageSize
s.state.set(mSpanManual)
} else {
// We must set span properties before the span is published anywhere
// since we're not holding the heap lock.
s.spanclass = spanclass
if sizeclass := spanclass.sizeclass(); sizeclass == 0 {
s.elemsize = nbytes
s.nelems = 1
s.divMul = 0
} else {
s.elemsize = uintptr(class_to_size[sizeclass])
s.nelems = nbytes / s.elemsize
s.divMul = class_to_divmagic[sizeclass]
}
// Initialize mark and allocation structures.
s.freeindex = 0
s.allocCache = ^uint64(0) // all 1s indicating all free.
s.gcmarkBits = newMarkBits(s.nelems)
s.allocBits = newAllocBits(s.nelems)
// It's safe to access h.sweepgen without the heap lock because it's
// only ever updated with the world stopped and we run on the
// systemstack which blocks a STW transition.
atomic.Store(&s.sweepgen, h.sweepgen)
// Now that the span is filled in, set its state. This
// is a publication barrier for the other fields in
// the span. While valid pointers into this span
// should never be visible until the span is returned,
// if the garbage collector finds an invalid pointer,
// access to the span may race with initialization of
// the span. We resolve this race by atomically
// setting the state after the span is fully
// initialized, and atomically checking the state in
// any situation where a pointer is suspect.
s.state.set(mSpanInUse)
}
// Commit and account for any scavenged memory that the span now owns.
if scav != 0 {
// sysUsed all the pages that are actually available
// in the span since some of them might be scavenged.
sysUsed(unsafe.Pointer(base), nbytes)
atomic.Xadd64(&memstats.heap_released, -int64(scav))
}
// Update stats.
if typ == spanAllocHeap {
atomic.Xadd64(&memstats.heap_inuse, int64(nbytes))
}
if typ.manual() {
// Manually managed memory doesn't count toward heap_sys.
memstats.heap_sys.add(-int64(nbytes))
}
// Update consistent stats.
stats := memstats.heapStats.acquire()
atomic.Xaddint64(&stats.committed, int64(scav))
atomic.Xaddint64(&stats.released, -int64(scav))
switch typ {
case spanAllocHeap:
atomic.Xaddint64(&stats.inHeap, int64(nbytes))
case spanAllocStack:
atomic.Xaddint64(&stats.inStacks, int64(nbytes))
case spanAllocPtrScalarBits:
atomic.Xaddint64(&stats.inPtrScalarBits, int64(nbytes))
case spanAllocWorkBuf:
atomic.Xaddint64(&stats.inWorkBufs, int64(nbytes))
}
memstats.heapStats.release()
// Publish the span in various locations.
// This is safe to call without the lock held because the slots
// related to this span will only ever be read or modified by
// this thread until pointers into the span are published (and
// we execute a publication barrier at the end of this function
// before that happens) or pageInUse is updated.
h.setSpans(s.base(), npages, s)
if !typ.manual() {
// Mark in-use span in arena page bitmap.
//
// This publishes the span to the page sweeper, so
// it's imperative that the span be completely initialized
// prior to this line.
arena, pageIdx, pageMask := pageIndexOf(s.base())
atomic.Or8(&arena.pageInUse[pageIdx], pageMask)
// Update related page sweeper stats.
h.pagesInUse.Add(int64(npages))
}
// Make sure the newly allocated span will be observed
// by the GC before pointers into the span are published.
publicationBarrier()
return s
}
// Try to add at least npage pages of memory to the heap,
// returning how much the heap grew by and whether it worked.
//
// h.lock must be held.
func (h *mheap) grow(npage uintptr) (uintptr, bool) {
assertLockHeld(&h.lock)
// We must grow the heap in whole palloc chunks.
// We call sysMap below but note that because we
// round up to pallocChunkPages which is on the order
// of MiB (generally >= to the huge page size) we
// won't be calling it too much.
ask := alignUp(npage, pallocChunkPages) * pageSize
totalGrowth := uintptr(0)
// This may overflow because ask could be very large
// and is otherwise unrelated to h.curArena.base.
end := h.curArena.base + ask
nBase := alignUp(end, physPageSize)
if nBase > h.curArena.end || /* overflow */ end < h.curArena.base {
// Not enough room in the current arena. Allocate more
// arena space. This may not be contiguous with the
// current arena, so we have to request the full ask.
av, asize := h.sysAlloc(ask)
if av == nil {
print("runtime: out of memory: cannot allocate ", ask, "-byte block (", memstats.heap_sys, " in use)\n")
return 0, false
}
if uintptr(av) == h.curArena.end {
// The new space is contiguous with the old
// space, so just extend the current space.
h.curArena.end = uintptr(av) + asize
} else {
// The new space is discontiguous. Track what
// remains of the current space and switch to
// the new space. This should be rare.
if size := h.curArena.end - h.curArena.base; size != 0 {
// Transition this space from Reserved to Prepared and mark it
// as released since we'll be able to start using it after updating
// the page allocator and releasing the lock at any time.
sysMap(unsafe.Pointer(h.curArena.base), size, &memstats.heap_sys)
// Update stats.
atomic.Xadd64(&memstats.heap_released, int64(size))
stats := memstats.heapStats.acquire()
atomic.Xaddint64(&stats.released, int64(size))
memstats.heapStats.release()
// Update the page allocator's structures to make this
// space ready for allocation.
h.pages.grow(h.curArena.base, size)
totalGrowth += size
}
// Switch to the new space.
h.curArena.base = uintptr(av)
h.curArena.end = uintptr(av) + asize
}
// Recalculate nBase.
// We know this won't overflow, because sysAlloc returned
// a valid region starting at h.curArena.base which is at
// least ask bytes in size.
nBase = alignUp(h.curArena.base+ask, physPageSize)
}
// Grow into the current arena.
v := h.curArena.base
h.curArena.base = nBase
// Transition the space we're going to use from Reserved to Prepared.
sysMap(unsafe.Pointer(v), nBase-v, &memstats.heap_sys)
// The memory just allocated counts as both released
// and idle, even though it's not yet backed by spans.
//
// The allocation is always aligned to the heap arena
// size which is always > physPageSize, so its safe to
// just add directly to heap_released.
atomic.Xadd64(&memstats.heap_released, int64(nBase-v))
stats := memstats.heapStats.acquire()
atomic.Xaddint64(&stats.released, int64(nBase-v))
memstats.heapStats.release()
// Update the page allocator's structures to make this
// space ready for allocation.
h.pages.grow(v, nBase-v)
totalGrowth += nBase - v
return totalGrowth, true
}
GC
GC使用三色标记-清除法
GC回收对象
root
- 被栈上的指针引用
- 被区区变量指针引用
- 被寄存器中的指针引用
间接引用也不可回收
三色标记法
- 黑色:有引用,已经扫描完成
- 灰色:有引用,正在扫描
- 白色:未扫描/垃圾
Yuasa删除屏障
- 并发标记时,对指针释放的白色对象置灰(可以杜绝在GC标记中被释放的指针被清理回收)
Dijkstra写屏障
- 并发标记时,对指针新指向的白色对象置灰(可以杜绝在GC标记中被插入的指针被清理回收)
混合屏障
Go使用混合屏障
GC分析工具
- go tool pprof
- go tool trace
- go build -gcflags=" -m"
- GODEBUG=" gctrace=1"