EfficientNet介绍

EfficientNet系列介绍

  • 卷积神经网络精度提升的经验
    • EfficientNet特点
      • 网络结构

卷积神经网络精度提升的经验

  1. 网络深度的增加,典型的如resnet,就是通过残差网络的堆叠,增加网络层数,以此来提升精度。
  2. 网络宽度的增加,通过增加每层网络的特征层数,提取更多的特征,以此来提升精度。
  3. 图像分辨率的增加,分辨率越高的图像,所能获取的信息越多,网络能够学习到更多的特征,从而提升精度。

EfficientNet特点

历史的实验经验表明,对于卷积神经网络的提升,着重点在于网络深度,网络宽度,分辨率这三个维度。因此,efficientnet应运而生,efficientnet结合了这三个优点,很好的平衡深度、宽度和分辨率这三个维度,通过一组固定的缩放系数统一缩放这三个维度。举个栗子,如果我们需要使用 2 N 2^N 2N的计算机资源,我们可以对网络深度放大 α N α^N αN,对网络宽度放大 β N β^N βN,对分辨率放大 γ N γ^N γN
EfficientNet介绍_第1张图片
如上图,(a)是baseline基准网络。(b)是网络宽度的缩放。(c)是网络深度的缩放。(d)是分辨率的缩放。(e)是平衡综合网络深度,网络宽度,分辨率三个维度。
其中,baseline基准网络是通过网络结构搜索得到,基于baseline基准网络进行放大得到的一系列网络就是EfficientNet网络。

如下图,是EfficientNet和其他网络的比较,我们可以看出EfficientNet相对于其他网络,有了质的突破。
EfficientNet介绍_第2张图片

网络结构

EfficientNet介绍_第3张图片
上图为EfficientNetB0的结构,B1到B7都是在此基础上进行的缩放。EfficientNetB0主要的结构在于MBConv结构的堆叠。

如图,就是这一结构的详细组成
EfficientNet介绍_第4张图片

下面是基于keras框架下的这一模块的具体实现。
def block(inputs,
          activation='swish',
          drop_rate=0.,
          name='',
          filters_in=32,
          filters_out=16,
          kernel_size=3,
          strides=1,
          expand_ratio=1,
          se_ratio=0.,
          id_skip=True):
          
  bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1

  # 升维设置
  filters = filters_in * expand_ratio
  #利用1*1的卷积核进行维度的提升
  if expand_ratio != 1:
    x = layers.Conv2D(
        filters,
        1,
        padding='same',
        use_bias=False,
        kernel_initializer=CONV_KERNEL_INITIALIZER,
        name=name + 'expand_conv')(
            inputs)
    x = layers.BatchNormalization(axis=bn_axis, name=name + 'expand_bn')(x)
    x = layers.Activation(activation, name=name + 'expand_activation')(x)
  else:
    x = inputs

  # 深度可分离 2D 卷积。
  if strides == 2:
    x = layers.ZeroPadding2D(
        padding=imagenet_utils.correct_pad(x, kernel_size),
        name=name + 'dwconv_pad')(x)
    conv_pad = 'valid'
  else:
    conv_pad = 'same'
  x = layers.DepthwiseConv2D(
      kernel_size,
      strides=strides,
      padding=conv_pad,
      use_bias=False,
      depthwise_initializer=CONV_KERNEL_INITIALIZER,
      name=name + 'dwconv')(x)
  x = layers.BatchNormalization(axis=bn_axis, name=name + 'bn')(x)
  x = layers.Activation(activation, name=name + 'activation')(x)

  #压缩放大的系数
  if 0 < se_ratio <= 1:
    filters_se = max(1, int(filters_in * se_ratio))
    se = layers.GlobalAveragePooling2D(name=name + 'se_squeeze')(x)
    se = layers.Reshape((1, 1, filters), name=name + 'se_reshape')(se)
    se = layers.Conv2D(
        filters_se,
        1,
        padding='same',
        activation=activation,
        kernel_initializer=CONV_KERNEL_INITIALIZER,
        name=name + 'se_reduce')(
            se)
    se = layers.Conv2D(
        filters,
        1,
        padding='same',
        activation='sigmoid',
        kernel_initializer=CONV_KERNEL_INITIALIZER,
        name=name + 'se_expand')(se)
    x = layers.multiply([x, se], name=name + 'se_excite')

  # 利用1*1的卷积核进行压缩
  x = layers.Conv2D(
      filters_out,
      1,
      padding='same',
      use_bias=False,
      kernel_initializer=CONV_KERNEL_INITIALIZER,
      name=name + 'project_conv')(x)
  x = layers.BatchNormalization(axis=bn_axis, name=name + 'project_bn')(x)
  #残差网络的实现
  if id_skip and strides == 1 and filters_in == filters_out:
    if drop_rate > 0:
      x = layers.Dropout(
          drop_rate, noise_shape=(None, 1, 1, 1), name=name + 'drop')(x)
    x = layers.add([x, inputs], name=name + 'add')
  return x

你可能感兴趣的:(深度学习,tensorflow,神经网络,机器学习)