MySQL进阶SQL优化

MySQL进阶SQL优化

查询效率分析:
  • 子查询为确保消除重复值,必须为外部查询的每个结果都处理嵌套查询。在这种情况下可以考虑用联接查询来取代。
  • 如果要用子查询,那就用EXISTS替代IN、用NOT EXISTS替代NOT IN。因为EXISTS引入的子查询只是测试是否存在符合子查询中指定条件的行,效率较高。无论在哪种情况下,NOT IN都是最低效的。因为它对子查询中的表执行了一个全表遍历。
  • 建立合理的索引,避免扫描多余数据,避免表扫描! 
    几百万条数据,照样几十毫秒完成查询.

SQL提高查询效率
  • 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

  • 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如: 
    select id from t where num is null 
    可以在num上设置默认值0,确保表中num列没有null值,然后这样查询: 
    select id from t where num=0

  • 3.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。

  • 4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如: 
    select id from t where num=10 or num=20 
    可以这样查询: 
    select id from t where num=10 
    union all 
    select id from t where num=20

  • 5.in 和 not in 也要慎用,否则会导致全表扫描,如: 
    select id from t where num in(1,2,3) 
    对于连续的数值,能用 between 就不要用 in 了: 
    select id from t where num between 1 and 3

  • 6.下面的查询也将导致全表扫描: 
    select id from t where name like ‘%abc%’ 
    若要提高效率,可以考虑全文检索。

  • 7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描: 
    select id from t where num=@num 
    可以改为强制查询使用索引: 
    select id from t with(index(索引名)) where num=@num

  • 8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如: 
    select id from t where num/2=100 
    应改为: 
    select id from t where num=100*2

  • 9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如: 
    select id from t where substring(name,1,3)=’abc’–name以abc开头的id 
    select id from t where datediff(day,createdate,’2005-11-30’)=0–‘2005-11-30’生成的id 
    应改为: 
    select id from t where name like ‘abc%’ 
    select id from t where createdate>=’2005-11-30’ and createdate<’2005-12-1’

  • 9.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

  • 10.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。

  • 11.很多时候用 exists 代替 in 是一个好的选择: 
    select num from a where num in(select num from b) 
    用下面的语句替换: 
    select num from a where exists(select 1 from b where num=a.num)

  • 12.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

  • 13.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。

  • 14.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

  • 15.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

  • 16.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。


优化铁律

1、避免将字段设为“允许为空” 
2、数据表设计要规范 
3、深入分析数据操作所要对数据库进行的操作 
4、尽量不要使用临时表 
5、多多使用事务 
6、尽量不要使用游标 
7、避免死锁 
8、要注意读写锁的使用 
9、不要打开大的数据集 
10、不要使用服务器端游标 
11、在程序编码时使用大数据量的数据库 
12、不要给“性别”列创建索引 
13、注意超时问题 
14、不要使用Select * 
15、在细节表中插入纪录时,不要在主表执行Select MAX(ID) 
16、尽量不要使用TEXT数据类型 
17、使用参数查询 
18、不要使用Insert导入大批的数据 
19、学会分析查询 
20、使用参照完整性 
21、用INNER JOIN 和LEFT JOIN代替Where

原文地址https://blog.csdn.net/lwl2014100338/article/details/81271160

你可能感兴趣的:(数据库,大数据)