【深入浅出强化学习-原理入门】2 基于模型的动态规划方法

【深入浅出强化学习-原理入门】2 基于模型的动态规划方法

    • 2.1 基于gym的机器人找金币游戏
      • 2.1.1 基于策略迭代算法找金币游戏
      • 2.1.2 基于值迭代算法找金币游戏
    • 2.2 基于gym的迷宫游戏
      • 2.2.1 基于策略迭代算法的迷宫游戏
      • 2.2.2 基于值迭代算法的迷宫游戏

2.1 基于gym的机器人找金币游戏

2.1.1 基于策略迭代算法找金币游戏

import gym
import random
import time

env = gym.make('GridWorld-v0')

class Learn:
    def __init__(self,grid_mdp):
        # 初始化状态值函数
        self.v = dict()#是个字典
        for state in grid_mdp.states:
            self.v[state]=0
        # 初始化策略,这些策略都在状态转移概率矩阵中
        self.pi=dict()
        # random.choice(seq):返回列表、元组、字符串的随机项
        self.pi[1]=random.choice(['e','s'])
        self.pi[2]=random.choice(['w','e'])
        self.pi[3]=random.choice(['w','s','e'])
        self.pi[4]=random.choice(['w','e'])
        self.pi[5]=random.choice(['w','s'])

    # 策略迭代算法
    def policy_iterate(self,grid_mdp):
        for i in range(100):
            # policy evaluation
            self.policy_evaluate(grid_mdp);
            # policy improvement
            self.policy_improve(grid_mdp);

    # 策略评估算法
    def policy_evaluate(self,grid_mdp):
        # 迭代1000次保证策略收敛
        for i in range(1000):
            delta = 0.0
            # 对整个状态空间扫描,保证状态空间每一个点的值函数都被估计
            for state in grid_mdp.states:
                if state in grid_mdp.terminate_states:
                    continue
                action = self.pi[state]
                t,s,r = grid_mdp.transform(state,action)
                new_v = r +grid_mdp.gamma * self.v[s]
                delta += abs(self.v[state]-new_v)
                self.v[state] = new_v
            if delta <1e-6:
                break

    # 策略改善算法
    # 基于当前的值函数得到贪婪策略,将贪婪策略作为更新的策略
    def policy_improve(self,grid_mdp):
        # 对整个状态空间遍历
        for state in grid_mdp.states:
            if state in grid_mdp.terminate_states: continue
            a1 = self.pi[state]
            t,s,r = grid_mdp.transform(state,a1)
            # 当不在状态转移概率中时,状态动作值函数不存在,状态值函数不变
            # if s!=-1:
            v1 = r+grid_mdp.gamma*self.v[s]
            # 对每个状态空间所对应的动作空间遍历
            # 贪婪策略
            for action in grid_mdp.actions:
                t,s,r = grid_mdp.transform(state,action)
                if s != -1:
                    if v1<r+grid_mdp.gamma*self.v[s]:
                        a1 = action
                        v1 = r +grid_mdp.gamma*self.v[s]
            # 更新策略
            self.pi[state] = a1

    # 最优动作
    def action(self,state):
        return self.pi[state]

gm = env.env
# 初始化智能体状态
state = env.reset()
# 实例化对象,获得初始化状态值函数和初始化策略
learn=Learn(gm)
#策略评估和策略改善
learn.policy_iterate(gm)
total_reward = 0
#最多走100步达到终止状态
for i in range(100):
    env.render()
    #每一个状态的策略都是最优策略
    action = learn.action(state)
    # 每一步按照最优策略走
    state,reward,done,_ = env.step(action)
    total_reward+=reward
    time.sleep(1)
    if done:
        # 显示环境中物体进入终止状态的图像
        env.render()
        break

grid_mdp.py

import logging #日志模块
import numpy
import random
from gym import spaces
import gym

logging = logging.getLogger(__name__)


# Set this in SOME subclasses
class GridEnv(gym.Env):
    metadata = {
        'render.modes':['human','rgb_array'],
        'video.frames_per_second':2
    }

    def _seed(self, seed=None):
        self.np_random, seed = seeding.np_random(seed)
        return [seed]

    def __init__(self):
        # 状态空间
        self.states = [1,2,3,4,5,6,7,8]
        # 设置机器人的位置,机器人的位置根据所处状态不同位置也不同。
        # 事先计算出每个状态点机器人位置的中心坐标,并存储到两个向量中,在类初始化中给出
        self.x = [140, 220, 300, 380, 460, 140, 300, 460]
        self.y = [250, 250, 250, 250, 250, 150, 150, 150]
        self.terminate_states = dict() #终止状态为字典格式
        self.terminate_states[6] = 1
        self.terminate_states[7] = 1
        self.terminate_states[8] = 1

        # 动作空间
        self.actions = ['n','e','s','w']

        # 回报函数
        self.rewards = dict(); #回报的数据结构为字典
        self.rewards['1_s'] = -1.0
        self.rewards['3_s'] = 1.0
        self.rewards['5_s'] = -1.0

        # 状态转移概率
        self.t = dict();
        self.t['1_s'] = 6
        self.t['1_e'] = 2
        self.t['2_w'] = 1
        self.t['2_e'] = 3
        self.t['3_s'] = 7
        self.t['3_w'] = 2
        self.t['3_e'] = 4
        self.t['4_w'] = 3
        self.t['4_e'] = 5
        self.t['5_w'] = 8
        self.t['5_w'] = 4

        #折扣因子
        self.gamma = 0.8
        self.viewer = None
        self.state = None

    # 返回下一步状态、立即回报和状态转移概率
    def transform(self,state,action):
        #遍历动作空间,当不再状态转移概率中,该状态设为-1
        s = -1
        r = 0
        key = '%d_%s'%(state,action)
        if key in self.rewards:
            r = self.rewards[key]
        # 状态转移
        if key in self.t:
            s = self.t[key]
        return self.t,s,r

    def getTerminal(self):
        return self.terminate_states

    def getGamma(self):
        return self.gamma

    def getStates(self):
        return self.states

    def getActions(self):
        return self.actions

    def setAction(self,s):
        self.state = s

        # reset函数建立
        # reset常常用随机的方法初始机器人状态

    def reset(self):
        self.state = self.states[int(random.random() * len(self.states))]
        return self.state

    # step()函数输入是动作,
    # 输出是下一时刻的动作、回报、是否终止、调试信息
    # 没有的用{}表示
    def step(self,action):
        # 系统当前状态
        state = self.state
        # 判断系统当前状态是否为终止状态
        if state in self.terminate_states:
            return state,0,True,{}
        #将状态与动作组成字典的键值
        # '定义的格式化字符串'%实际值
        # 当定义的格式化字符串中包含两个以上占位符时,必须将所有实际值封装在元组中
        key = '%d_%s'%(state,action)

        #状态转移
        if key in self.t:
            next_state = self.t[key]
        else:
            next_state = state
        # 系统当前状态
        self.state = next_state

        is_terminal = False

        if next_state in self.terminate_states:
            is_terminal = True

        if key not in self.rewards:
            r = 0.0
        else:
            r = self.rewards[key]

        return next_state,r,is_terminal,{}


        # render函数建立,扮演图像引擎的角色,图像引擎显示环境中物体的图像
    def render(self, mode='human', close=False):
        if close==True:
            if self.viewer is not None:
                self.viewer.close()
                self.viewer = None
            return
        screen_width = 600
        screen_height = 400

        if self.viewer is None:
            # 调用rendering的画图函数
            from gym.envs.classic_control import rendering
            self.viewer = rendering.Viewer(screen_width, screen_height)

            # 创建网格世界,一共11条直线
            self.line1 = rendering.Line((100, 300), (500, 300))
            self.line2 = rendering.Line((100, 200), (500, 200))
            self.line3 = rendering.Line((100, 300), (100, 100))
            self.line4 = rendering.Line((180, 300), (180, 100))
            self.line5 = rendering.Line((260, 300), (260, 100))
            self.line6 = rendering.Line((340, 300), (340, 100))
            self.line7 = rendering.Line((420, 300), (420, 100))
            self.line8 = rendering.Line((500, 300), (500, 100))
            self.line9 = rendering.Line((100, 100), (180, 100))
            self.line10 = rendering.Line((260, 100), (340, 100))
            self.line11 = rendering.Line((420, 100), (500, 100))

            # 接下来写死亡区域,黑色实心圆代表死亡区域
            # 创建第一个骷髅
            self.kulo1 = rendering.make_circle(40)
            self.circletrans = rendering.Transform(translation=(140, 150))  # 圆心坐标
            self.kulo1.add_attr(self.circletrans)
            self.kulo1.set_color(0, 0, 0)

            # 创建第二个骷髅
            self.kulo2 = rendering.make_circle(40)
            self.circletrans = rendering.Transform(translation=(460, 150))
            self.kulo2.add_attr(self.circletrans)
            self.kulo2.set_color(0, 0, 0)

            # 创建金币区域,用浅色的圆表示
            self.gold = rendering.make_circle(40)
            self.circletrans = rendering.Transform(translation=(300, 150))
            self.gold.add_attr(self.circletrans)
            self.gold.set_color(1, 0.9, 0)

            # 创建机器人,用不同颜色的圆表示
            self.robot = rendering.make_circle(30)
            self.robotrans = rendering.Transform()
            self.robot.add_attr(self.robotrans)
            self.robot.set_color(0.8, 0.6, 0.4)

            # 给11条直线设置颜色,并将这些创建的对象添加到几何中
            self.line1.set_color(0, 0, 0)
            self.line2.set_color(0, 0, 0)
            self.line3.set_color(0, 0, 0)
            self.line4.set_color(0, 0, 0)
            self.line5.set_color(0, 0, 0)
            self.line6.set_color(0, 0, 0)
            self.line7.set_color(0, 0, 0)
            self.line8.set_color(0, 0, 0)
            self.line9.set_color(0, 0, 0)
            self.line10.set_color(0, 0, 0)
            self.line11.set_color(0, 0, 0)

            self.viewer.add_geom(self.line1)
            self.viewer.add_geom(self.line2)
            self.viewer.add_geom(self.line3)
            self.viewer.add_geom(self.line4)
            self.viewer.add_geom(self.line5)
            self.viewer.add_geom(self.line6)
            self.viewer.add_geom(self.line7)
            self.viewer.add_geom(self.line8)
            self.viewer.add_geom(self.line9)
            self.viewer.add_geom(self.line10)
            self.viewer.add_geom(self.line11)
            self.viewer.add_geom(self.kulo1)
            self.viewer.add_geom(self.kulo2)
            self.viewer.add_geom(self.gold)
            self.viewer.add_geom(self.robot)


        # 根据这两个向量和机器人当前状态,就可以设置机器人当前的圆心坐标
        if self.state is None: return None
        self.robotrans.set_translation(self.x[self.state - 1], self.y[self.state - 1])


        return self.viewer.render(return_rgb_array=mode =='rgb_array')

具体实现见上一节

2.1.2 基于值迭代算法找金币游戏

import gym
import random
import time

env = gym.make('GridWorld-v0')

class Learn:
    def __init__(self,grid_mdp):
        # 初始化状态值函数
        self.v = dict()#是个字典
        for state in grid_mdp.states:
            self.v[state]=0
        # 初始化策略,这些策略都在状态转移概率矩阵中
        self.pi=dict()
        # random.choice(seq):返回列表、元组、字符串的随机项
        self.pi[1]=random.choice(['e','s'])
        self.pi[2]=random.choice(['w','e'])
        self.pi[3]=random.choice(['w','s','e'])
        self.pi[4]=random.choice(['w','e'])
        self.pi[5]=random.choice(['w','s'])

    # 值迭代
    def value_iteration(self, grid_mdp):
        # 大循环保证值函数收敛
        for i in range(1000):
            delta = 0.0
            # 遍历整个状态空间
            for state in grid_mdp.states:
                if state in grid_mdp.terminate_states: continue
                a1 = grid_mdp.actions[0]
                t, s, r = grid_mdp.transform(state, a1)
                if s != -1:
                    v1 = r + grid_mdp.gamma * self.v[s]
                    # 遍历动作空间选择动作
                    for action in grid_mdp.actions:
                        t, s, r = grid_mdp.transform(state, action)
                        if s != -1:
                            if v1 < r + grid_mdp.gamma * self.v[s]:
                                a1 = action
                                v1 = r + grid_mdp.gamma * self.v[s]
                    delta += abs(v1 - self.v[state])
                    self.pi[state] = a1
                    self.v[state] = v1
            if delta < 1e-6:
                break

    # 最优动作
    def action(self,state):
        return self.pi[state]

gm = env.env
# 初始化智能体状态
state = env.reset()
# 实例化对象,获得初始化状态值函数和初始化策略
learn=Learn(gm)
#策略评估和策略改善
learn.value_iteration(gm)
total_reward = 0
#最多走100步达到终止状态
for i in range(100):
    env.render()
    #每一个状态的策略都是最优策略
    action = learn.action(state)
    # 每一步按照最优策略走
    state,reward,done,_ = env.step(action)
    total_reward+=reward
    time.sleep(1)
    if done:
        # 显示环境中物体进入终止状态的图像
        env.render()
        break

2.2 基于gym的迷宫游戏

2.2.1 基于策略迭代算法的迷宫游戏

import gym
import random
import time

env = gym.make('MazeWorld-v0')

class Learn:
    def __init__(self,maze_mdp):
        # 初始化状态值函数
        self.v = dict()#是个字典
        for state in maze_mdp.states:
            self.v[state]=0
        # 初始化策略,这些策略都在状态转移概率矩阵中
        self.pi=dict()
        # random.choice(seq):返回列表、元组、字符串的随机项
        self.pi[1] = random.choice(['s', 'e'])
        self.pi[2] = random.choice(['w', 'e', 's'])
        self.pi[3] = random.choice(['w', 's'])
        self.pi[4] = random.choice(['s'])
        self.pi[5] = random.choice(['e', 'n'])
        self.pi[6] = random.choice(['w', 'e', 'n'])
        self.pi[7] = random.choice(['w', 'n', 's'])
        self.pi[8] = random.choice(['e', 'n', 's'])
        self.pi[9] = random.choice(['e', 'n', 's'])
        self.pi[10] = random.choice(['w', 'e', 's'])
        self.pi[11] = random.choice(['w', 'n', 's'])
        self.pi[12] = random.choice(['e', 's'])
        self.pi[13] = random.choice(['w', 'e', 's'])
        self.pi[14] = random.choice(['w', 'e', 'n'])
        self.pi[15] = random.choice(['w', 'e', 'n'])
        self.pi[16] = random.choice(['w', 'e', 'n'])
        self.pi[17] = random.choice(['e', 'n'])
        self.pi[18] = random.choice(['w', 'n'])


    # 策略迭代算法
    def policy_iterate(self,maze_mdp):
        for i in range(100):
            # policy evaluation
            self.policy_evaluate(maze_mdp);
            # policy improvement
            self.policy_improve(maze_mdp);

    # 策略评估算法
    def policy_evaluate(self,maze_mdp):
        # 迭代1000次保证策略收敛
        for i in range(1000):
            delta = 0.0
            # 对整个状态空间扫描,保证状态空间每一个点的值函数都被估计
            for state in maze_mdp.states:
                if state in maze_mdp.terminate_states:
                    continue
                action = self.pi[state]
                t,s,r = maze_mdp.transform(state,action)
                if s!=-1:
                    new_v = r +maze_mdp.gamma * self.v[s]
                    delta += abs(self.v[state]-new_v)
                    self.v[state] = new_v
            if delta <1e-6:
                break

    # 策略改善算法
    # 基于当前的值函数得到贪婪策略,将贪婪策略作为更新的策略
    def policy_improve(self,maze_mdp):
        # 对整个状态空间遍历
        for state in maze_mdp.states:
            if state in maze_mdp.terminate_states: continue
            a1 = self.pi[state]
            t,s,r = maze_mdp.transform(state,a1)
            # 当不在状态转移概率中时,状态动作值函数不存在,状态值函数不变
            if s!=-1:
                v1 = r+maze_mdp.gamma*self.v[s]
                # 对每个状态空间所对应的动作空间遍历
                # 贪婪策略
                for action in maze_mdp.actions:
                    t,s,r = maze_mdp.transform(state,action)
                    if s != -1:
                        if v1<r+maze_mdp.gamma*self.v[s]:
                            a1 = action
                            v1 = r +maze_mdp.gamma*self.v[s]
            # 更新策略
            self.pi[state] = a1

    # 最优动作
    def action(self,state):
        return self.pi[state]

gm = env.env
# 初始化智能体状态
state = env.reset()
# 实例化对象,获得初始化状态值函数和初始化策略
learn=Learn(gm)
#策略评估和策略改善
learn.policy_iterate(gm)
total_reward = 0
#最多走100步达到终止状态
for i in range(100):
    env.render()
    #每一个状态的策略都是最优策略
    action = learn.action(state)
    # 每一步按照最优策略走
    state,reward,done,_ = env.step(action)
    total_reward+=reward
    time.sleep(1)
    if done:
        # 显示环境中物体进入终止状态的图像
        env.render()
        break
  • maze_mdp.py
import logging #日志模块
import numpy
import random
from gym import spaces
import gym

logging = logging.getLogger(__name__)


# Set this in SOME subclasses
class MazeEnv(gym.Env):
    metadata = {
        'render.modes':['human','rgb_array'],
        'video.frames_per_second':2
    }
    def _seed(self, seed=None):
        self.np_random, seed = seeding.np_random(seed)
        return [seed]


    def __init__(self):
        # 状态空间
        self.states = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]
        # 设置机器人的位置,机器人的位置根据所处状态不同位置也不同。
        # 事先计算出每个状态点机器人位置的中心坐标,并存储到两个向量中,在类初始化中给出
        self.x = [125, 175, 225, 325, 125, 175, 225, 325, 225, 275, 325, 125, 175, 225, 275, 325, 125, 175]
        self.y = [325, 325, 325, 325, 275, 275, 275, 275, 225, 225, 225, 175, 175, 175, 175, 175, 125, 125]
        self.terminate_states = dict() #终止状态为字典格式
        self.terminate_states[11] = 1

        # 动作空间
        self.actions = ['n','e','s','w']

        # 回报函数
        self.rewards = dict(); #回报的数据结构为字典
        self.rewards['18_s'] = 20.0
        self.rewards['10_e'] = 20.0
        self.rewards['16_n'] = 20.0

        # 状态转移概率
        self.t = dict();
        self.t['1_e'] = 2
        self.t['1_s'] = 5
        self.t['2_w'] = 1
        self.t['2_e'] = 3
        self.t['2_s'] = 6
        self.t['3_w'] = 2
        self.t['3_s'] = 7
        self.t['4_s'] = 8
        self.t['5_e'] = 6
        self.t['5_n'] = 1
        self.t['6_w'] = 5
        self.t['6_e'] = 7
        self.t['6_n'] = 2
        self.t['7_w'] = 6
        self.t['7_s'] = 9
        self.t['7_n'] = 3
        self.t['8_s'] = 11
        self.t['8_n'] = 4
        self.t['9_e'] = 10
        self.t['9_s'] = 14
        self.t['9_n'] = 7
        self.t['10_w'] = 9
        self.t['10_e'] = 11
        self.t['10_s'] = 15
        self.t['11_w'] = 10
        self.t['11_s'] = 16
        self.t['11_n'] = 8
        self.t['12_e'] = 13
        self.t['12_s'] = 17
        self.t['13_w'] = 12
        self.t['13_e'] = 14
        self.t['13_s'] = 18
        self.t['14_w'] = 13
        self.t['14_e'] = 15
        self.t['14_n'] = 9
        self.t['15_w'] = 14
        self.t['15_e'] = 16
        self.t['15_n'] = 10
        self.t['16_w'] = 15
        self.t['16_n'] = 11
        self.t['17_e'] = 18
        self.t['17_n'] = 12
        self.t['18_w'] = 17
        self.t['18_n'] = 13

        #折扣因子
        self.gamma = 0.8
        self.viewer = None
        self.state = None

    # 返回下一步状态、立即回报和状态转移概率
    def transform(self, state, action):
        # 遍历动作空间,当不再状态转移概率中,该状态设为-1
        s = -1
        r = 0
        key = '%i_%s' % (state, action)
        if key in self.rewards:
            r = self.rewards[key]
        # 状态转移
        if key in self.t:
            s = self.t[key]
        return self.t, s, r

    def getTerminal(self):
        return self.terminate_states

    def getGamma(self):
        return self.gamma

    def getStates(self):
        return self.states

    def getAction(self):
        return self.actions

    def getTerminate_states(self):
        return self.terminate_states

    def setAction(self,s):
        self.state = s

    # step()函数输入是动作,
    # 输出是下一时刻的动作、回报、是否终止、调试信息
    # 没有的用{}表示
    def _step(self,action):
        # 系统当前状态
        state = self.state
        # 判断系统当前状态是否为终止状态
        if state in self.terminate_states:
            return state,0,True,{}
        #将状态与动作组成字典的键值
        key = "%d_%s"%(state,action)

        #状态转移
        if key in self.t:
            next_state = self.t[key]
        else:
            next_state = state
        self.state = next_state

        is_terminal = False

        if next_state in self.terminate_states:
            is_terminal = True

        if key not in self.rewards:
            r = -1.0
        else:
            r = self.rewards[key]

        return next_state,r,is_terminal,{}

    # reset函数建立
    # reset常常用随机的方法初始机器人状态
    def _reset(self):
        self.state = self.states[int(random.random()*len(self.states))]
        return self.state


        # render函数建立
    def _render(self, mode='human', close=False):
        if close:
            if self.viewer is not None:
                self.viewer.close()
                self.viewer = None
            return
        screen_width = 450
        screen_height = 450

        if self.viewer is None:
            # 调用rendering的画图函数
            from gym.envs.classic_control import rendering
            self.viewer = rendering.Viewer(screen_width, screen_height)

            # 创建网格世界,一共12条直线
            self.line1 = rendering.Line((100, 350), (350, 350))
            self.line2 = rendering.Line((100, 300), (350, 300))
            self.line3 = rendering.Line((100, 250), (350, 250))
            self.line4 = rendering.Line((100, 200), (350, 200))
            self.line5 = rendering.Line((100, 150), (350, 150))
            self.line6 = rendering.Line((100, 100), (350, 100))
            self.line7 = rendering.Line((100, 350), (100, 100))
            self.line8 = rendering.Line((150, 350), (150, 100))
            self.line9 = rendering.Line((200, 350), (200, 100))
            self.line10 = rendering.Line((250, 350), (250, 100))
            self.line11 = rendering.Line((300, 350), (300, 100))
            self.line12 = rendering.Line((350, 350), (350, 100))

            # 接下来写墙块,黑色填满代表墙块
            # 创建第一个墙块
            self.wall1 = rendering.make_polygon([(250,350),(300,350), (300,300),(250,300)],filled=True)
            self.wall1.set_color(0, 0, 0)

            # 创建第二个墙块
            self.wall2 = rendering.make_polygon([(250,300),(300,300),(300,250),(250,250)],filled=True)
            self.wall2.set_color(0, 0, 0)

            # 创建第三个墙块
            self.wall3 = rendering.make_polygon([(100, 250), (150, 250), (150,200),(100,200)], filled=True)
            self.wall3.set_color(0, 0, 0)

            # 创建第四个墙块
            self.wall4 = rendering.make_polygon([(150, 250), (200, 250), (200,200),(150,200)], filled=True)
            self.wall4.set_color(0, 0, 0)

            # 创建第五个墙块
            self.wall5 = rendering.make_polygon([(200, 150), (250, 150), (250, 100),(200, 100)], filled=True)
            self.wall5.set_color(0, 0, 0)

            # 创建第六个墙块
            self.wall6 = rendering.make_polygon([(250, 150), (300, 150), (300, 100),(250, 100)], filled=True)
            self.wall6.set_color(0, 0, 0)

            # 创建第七个墙块
            self.wall7 = rendering.make_polygon([(300, 150), (350, 150), (350, 100),(300, 100)], filled=True)
            self.wall7.set_color(0, 0, 0)

            # 创建出口,用三角形表示
            self.goal = rendering.make_polygon([(325,245),(300,205),(350,205)],
                                                filled=True)
            self.goal.set_color(1, 0.9, 0)

            # 创建机器人,用不同颜色的圆表示
            self.robot = rendering.make_circle(15)
            self.robotrans = rendering.Transform()
            self.robot.add_attr(self.robotrans)
            self.robot.set_color(0.8, 0.6, 0.4)

            # 给11条直线设置颜色,并将这些创建的对象添加到几何中
            self.line1.set_color(0, 0, 0)
            self.line2.set_color(0, 0, 0)
            self.line3.set_color(0, 0, 0)
            self.line4.set_color(0, 0, 0)
            self.line5.set_color(0, 0, 0)
            self.line6.set_color(0, 0, 0)
            self.line7.set_color(0, 0, 0)
            self.line8.set_color(0, 0, 0)
            self.line9.set_color(0, 0, 0)
            self.line10.set_color(0, 0, 0)
            self.line11.set_color(0, 0, 0)
            self.line12.set_color(0, 0, 0)

            self.viewer.add_geom(self.line1)
            self.viewer.add_geom(self.line2)
            self.viewer.add_geom(self.line3)
            self.viewer.add_geom(self.line4)
            self.viewer.add_geom(self.line5)
            self.viewer.add_geom(self.line6)
            self.viewer.add_geom(self.line7)
            self.viewer.add_geom(self.line8)
            self.viewer.add_geom(self.line9)
            self.viewer.add_geom(self.line10)
            self.viewer.add_geom(self.line11)
            self.viewer.add_geom(self.line12)
            self.viewer.add_geom(self.wall1)
            self.viewer.add_geom(self.wall2)
            self.viewer.add_geom(self.wall3)
            self.viewer.add_geom(self.wall4)
            self.viewer.add_geom(self.wall5)
            self.viewer.add_geom(self.wall6)
            self.viewer.add_geom(self.wall7)
            self.viewer.add_geom(self.goal)
            self.viewer.add_geom(self.robot)


        # 根据这两个向量和机器人当前状态,就可以设置机器人当前的圆心坐标
        if self.state is None: return None
        self.robotrans.set_translation(self.x[self.state - 1], self.y[self.state - 1])


        return self.viewer.render(return_rgb_array=mode =='rgb_array')
  • 结果
    【深入浅出强化学习-原理入门】2 基于模型的动态规划方法_第1张图片
    gif软件没搞好。。。

2.2.2 基于值迭代算法的迷宫游戏

import gym
import random
import time

env = gym.make('MazeWorld-v0')

class Learn:
    def __init__(self,maze_mdp):
        # 初始化状态值函数
        self.v = dict()#是个字典
        for state in maze_mdp.states:
            self.v[state]=0
        # 初始化策略,这些策略都在状态转移概率矩阵中
        self.pi=dict()
        # random.choice(seq):返回列表、元组、字符串的随机项
        self.pi[1] = random.choice(['s', 'e'])
        self.pi[2] = random.choice(['w', 'e', 's'])
        self.pi[3] = random.choice(['w', 's'])
        self.pi[4] = random.choice(['s'])
        self.pi[5] = random.choice(['e', 'n'])
        self.pi[6] = random.choice(['w', 'e', 'n'])
        self.pi[7] = random.choice(['w', 'n', 's'])
        self.pi[8] = random.choice(['e', 'n', 's'])
        self.pi[9] = random.choice(['e', 'n', 's'])
        self.pi[10] = random.choice(['w', 'e', 's'])
        self.pi[11] = random.choice(['w', 'n', 's'])
        self.pi[12] = random.choice(['e', 's'])
        self.pi[13] = random.choice(['w', 'e', 's'])
        self.pi[14] = random.choice(['w', 'e', 'n'])
        self.pi[15] = random.choice(['w', 'e', 'n'])
        self.pi[16] = random.choice(['w', 'e', 'n'])
        self.pi[17] = random.choice(['e', 'n'])
        self.pi[18] = random.choice(['w', 'n'])

    # 值迭代
    def value_iteration(self, grid_mdp):
        # 大循环保证值函数收敛
        for i in range(1000):
            delta = 0.0
            # 遍历整个状态空间
            for state in grid_mdp.states:
                if state in grid_mdp.terminate_states: continue
                a1 = grid_mdp.actions[0]
                t, s, r = grid_mdp.transform(state, a1)
                if s != -1:
                    v1 = r + grid_mdp.gamma * self.v[s]
                    # 遍历动作空间选择动作
                    for action in grid_mdp.actions:
                        t, s, r = grid_mdp.transform(state, action)
                        if s != -1:
                            if v1 < r + grid_mdp.gamma * self.v[s]:
                                a1 = action
                                v1 = r + grid_mdp.gamma * self.v[s]
                    delta += abs(v1 - self.v[state])
                    self.pi[state] = a1
                    self.v[state] = v1
            if delta < 1e-6:
                break

    # 最优动作
    def action(self,state):
        return self.pi[state]

gm = env.env
# 初始化智能体状态
state = env.reset()
# 实例化对象,获得初始化状态值函数和初始化策略
learn=Learn(gm)
#策略评估和策略改善
learn.value_iteration(gm)
total_reward = 0
#最多走100步达到终止状态
for i in range(100):
    env.render()
    #每一个状态的策略都是最优策略
    action = learn.action(state)
    # 每一步按照最优策略走
    state,reward,done,_ = env.step(action)
    total_reward+=reward
    time.sleep(1)
    if done:
        # 显示环境中物体进入终止状态的图像
        env.render()
        break

你可能感兴趣的:(深入浅出强化学习,强化学习,python,算法,深度学习,机器学习)