PT_正态总体的抽样分布

文章目录

    • 正态总体的抽样分布
      • 性质
        • 样本均值
      • 一个正态总体的抽样分布
        • χ 2 分布 \chi^2分布 χ2分布
          • cases1:
          • cases2:
          • 自由度说明
        • t分布:
      • 两个正态总体的抽样分布
        • F分布
        • σ 1 = σ 2 \sigma_1=\sigma_2 σ1=σ2的t分布

正态总体的抽样分布

  • 设 X 1 , X 2 , ⋯   , X n 是取自总体正态 X ∼ N ( μ , σ 2 ) 的样本 X ‾ = 1 n ∑ i = 1 n X i S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 为样本方差 设X_1,X_2,\cdots,X_n是取自总体正态X\sim{N(\mu,\sigma^2)}的样本 \\\overline{X}=\frac{1}{n}\sum\limits_{i=1}^{n}X_i \\S^2=\frac{1}{n-1}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2为样本方差 X1,X2,,Xn是取自总体正态XN(μ,σ2)的样本X=n1i=1nXiS2=n11i=1n(XiX)2为样本方差

性质

样本均值

  • X ‾ ∼ N ( μ , σ 2 n ) \overline{X}\sim{N(\mu,\frac{\sigma^2}{n})} XN(μ,nσ2)
    • 可以有独立正态分布可加性和随机变量线性函数的规律得到
  • 标准化: x ‾ ∗ = X ‾ − μ σ / n ∼ N ( 0 , 1 ) \overline{x}^*=\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim{N(0,1)} x=σ/n XμN(0,1)

一个正态总体的抽样分布

χ 2 分布 \chi^2分布 χ2分布

cases1:
  • χ 2 = ∑ i = 1 n ( 1 σ ( X i − μ ) ) 2 = 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 ∼ χ 2 ( n ) \chi^2=\sum_{i=1}^{n}(\frac{1}{\sigma} (X_i-\mu))^2=\frac{1}{\sigma^2}\sum_{i=1}^{n}(X_i-\mu)^2 \sim{\chi^2(n)} χ2=i=1n(σ1(Xiμ))2=σ21i=1n(Xiμ)2χ2(n)

    • X ∼ N ( μ , σ 2 ) X i ∼ N ( μ , σ 2 ) Z = X i − μ ∼ N ( 0 , σ 2 ) , ( a = 1 , b = − μ ) 1 σ ( X i − μ ) = 1 σ Z ∼ N ( 0 , 1 ) , ( a = 1 σ , b = 0 ) 得证 X\sim{N(\mu,\sigma^2)} \\ X_i\sim{N(\mu,\sigma^2)} \\ Z=X_i-\mu\sim{N(0,\sigma^2)},(a=1,b=-\mu) \\ \frac{1}{\sigma} (X_i-\mu)=\frac{1}{\sigma}Z\sim{N(0,1)},(a=\frac{1}{\sigma},b=0) \\\\ 得证 XN(μ,σ2)XiN(μ,σ2)Z=XiμN(0,σ2),(a=1,b=μ)σ1(Xiμ)=σ1ZN(0,1),(a=σ1,b=0)得证
cases2:
  • X ‾ 和 S 2 相互独立 \overline{X}和S^2相互独立 XS2相互独立

  • ξ = ( n − 1 ) σ 2 S 2 ∼ χ 2 ( n − 1 ) \xi=\frac{(n-1)}{\sigma^2}S^2 \sim{\chi^2(n-1)} ξ=σ2(n1)S2χ2(n1)

自由度说明
  • 上式自由度:

    • S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 S 2 ( n − 1 ) = ∑ i = 1 n ( X i − X ‾ ) 2 S 2 ( n − 1 ) 1 σ 2 = 1 σ 2 ∑ i = 1 n ( X i − X ‾ ) 2 记 ζ = ∑ i = 1 n ( X i − X ‾ ) 2 ζ 是 n 个随机变量 ( X ) A = ∑ i = 1 n X i X ‾ = 1 n A 并且存在约束 : ∑ i = 1 n ( X i − X ‾ ) = 0 ( ∑ i = 1 n X i − ∑ i = 1 n ( X ‾ ) = ∑ i = 1 n X i − n ( X ‾ ) = A − A = 0 ) S^2=\frac{1}{n-1}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2 \\S^2(n-1)=\sum\limits_{i=1}^{n}(X_i-\overline{X})^2 \\S^2(n-1)\frac{1}{\sigma^2}=\frac{1}{\sigma^2}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2 \\记\zeta=\sum\limits_{i=1}^{n}(X_i-\overline{X})^2 \\\zeta是n个随机变量(X) \\A=\sum\limits_{i=1}^{n}X_i \\\overline{X}=\frac{1}{n}A \\并且存在约束:\sum\limits_{i=1}^{n}(X_i-\overline{X})=0 \\ (\sum\limits_{i=1}^{n}X_i-\sum\limits_{i=1}^{n}(\overline{X}) =\sum\limits_{i=1}^{n}X_i-n(\overline{X}) =A-A=0) S2=n11i=1n(XiX)2S2(n1)=i=1n(XiX)2S2(n1)σ21=σ21i=1n(XiX)2ζ=i=1n(XiX)2ζn个随机变量(X)A=i=1nXiX=n1A并且存在约束:i=1n(XiX)=0(i=1nXii=1n(X)=i=1nXin(X)=AA=0)

t分布:

  • η = X ‾ ∗ ξ / n − 1 = X ‾ − μ S / n ∼ t ( n − 1 ) \eta=\frac{\overline{X}^*}{\sqrt{\xi}/\sqrt{n-1}} =\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim{t(n-1)} η=ξ /n1 X=S/n Xμt(n1)

    • t = X Y / n ; X ∼ N ( 0 , 1 ) ; Y ∼ t ( n ) t = X Y / ( n − 1 ) ; X ∼ N ( 0 , 1 ) ; Y ∼ t ( n − 1 ) t = X ‾ ∗ ξ / ( n − 1 ) ; x ‾ ∗ = X ‾ − μ σ / n ∼ N ( 0 , 1 ) ξ = ( n − 1 ) σ 2 S 2 ∼ t ( n − 1 ) t = X ‾ − μ σ / n ( ( n − 1 ) σ 2 S 2 ) / ( n − 1 ) = X ‾ − μ S σ σ / n t = X ‾ − μ S / n ∼ t ( n − 1 ) \\t=\frac{X}{\sqrt{Y/n}};X\sim{N(0,1)};Y\sim{t(n)} \\t=\frac{X}{\sqrt{Y/(n-1)}};X\sim{N(0,1)};Y\sim{t(n-1)} \\ \\t=\frac{\overline{X}^*}{\sqrt{\xi/{(n-1)}}}; \\ \overline{x}^*=\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim{N(0,1)} \\\xi=\frac{(n-1)}{\sigma^2}S^2\sim{t(n-1)} \\t=\frac{\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}} {\sqrt{(\frac{(n-1)}{\sigma^2}S^2)/(n-1)}} =\frac{\overline{X}-\mu}{ \frac{S}{\sigma}\sigma/\sqrt{n} } \\ t=\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim{t(n-1)} t=Y/n X;XN(0,1);Yt(n)t=Y/(n1) X;XN(0,1);Yt(n1)t=ξ/(n1) X;x=σ/n XμN(0,1)ξ=σ2(n1)S2t(n1)t=(σ2(n1)S2)/(n1) σ/n Xμ=σSσ/n Xμt=S/n Xμt(n1)

两个正态总体的抽样分布

F分布

  • S 1 = ( X 1 , X 2 , ⋯   , X n 1 ) S 2 = ( Y 1 , Y 2 , ⋯   , Y n 2 ) S i 是总体 X ∼ N ( μ i , σ i 2 ) 的样本 ( i = 1 , 2 ) S 1 与 S 2 相互独立 \mathscr{S_1}=(X_1,X_2,\cdots,X_{n_1}) \\ \mathscr{S_2}=(Y_1,Y_2,\cdots,Y_{n_2}) \\ \mathscr{S_i}是总体X\sim{N(\mu_i,\sigma_i^2)}的样本(i=1,2) \\\mathscr{S_1}与\mathscr{S_2}相互独立 S1=(X1,X2,,Xn1)S2=(Y1,Y2,,Yn2)Si是总体XN(μi,σi2)的样本(i=1,2)S1S2相互独立

    • X ‾ = 1 n 1 ∑ i = 1 n 1 X i Y ‾ = 1 n 2 ∑ i = 1 n 2 X i S 1 2 = 1 n 1 − 1 ∑ i = 1 n 1 ( X i − X ‾ ) 2 S 2 2 = 1 n 2 − 1 ∑ i = 1 n 2 ( X i − X ‾ ) 2 \overline{X}=\frac{1}{n_1}\sum\limits_{i=1}^{n_1}X_i \\ \overline{Y}=\frac{1}{n_2}\sum\limits_{i=1}^{n_2}X_i \\ S_1^2=\frac{1}{n_1-1}\sum\limits_{i=1}^{n_1}(X_i-\overline{X})^2 \\ S_2^2=\frac{1}{n_2-1}\sum\limits_{i=1}^{n_2}(X_i-\overline{X})^2 X=n11i=1n1XiY=n21i=1n2XiS12=n111i=1n1(XiX)2S22=n211i=1n2(XiX)2
  • F = S 1 2 / S 2 2 σ 1 2 / σ 2 2 = S 1 2 / σ 1 2 S 2 2 / σ 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) F=\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} =\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim{F(n_1-1,n_2-1)} F=σ12/σ22S12/S22=S22/σ22S12/σ12F(n11,n21)

  • 推导:

    • F = X / n 1 Y / n 2 ∼ F ( n 1 , n 2 ) ; X ∼ χ 2 ( n 1 ) ; Y ∼ χ 2 ( n 2 ) 根据 F 分布的定义 : 对于 ξ i = ( n i − 1 ) σ i 2 S i 2 ∼ χ 2 ( n i − 1 ) 则 : ξ 1 / ( n 1 − 1 ) ξ 2 / ( n 2 − 1 ) ∼ F ( ( n 1 − 1 ) , ( n 2 − 1 ) ) F = S 1 2 / S 2 2 σ 1 2 / σ 2 2 = ξ 1 / ( n 1 − 1 ) ξ 2 / ( n 2 − 1 ) 从而证得 : 上述结论 F=\frac{X/n_1}{Y/n_2}\sim{F(n_1,n_2)}; \\X\sim{\chi^2(n_1)};Y\sim{\chi^2(n_2)} \\\\ 根据F分布的定义:对于 \\ \xi_i=\frac{(n_i-1)}{\sigma_i^2}S_i^2 \sim{\chi^2(n_i-1)} \\则: \\ \frac{\xi_1/(n_1-1)}{\xi_2/(n_2-1)} \sim{F((n_1-1),(n_2-1))} \\F=\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} =\frac{\xi_1/(n_1-1)}{\xi_2/(n_2-1)} \\从而证得:上述结论 F=Y/n2X/n1F(n1,n2);Xχ2(n1);Yχ2(n2)根据F分布的定义:对于ξi=σi2(ni1)Si2χ2(ni1):ξ2/(n21)ξ1/(n11)F((n11),(n21))F=σ12/σ22S12/S22=ξ2/(n21)ξ1/(n11)从而证得:上述结论

σ 1 = σ 2 \sigma_1=\sigma_2 σ1=σ2的t分布

T = X ‾ − Y ‾ − ( μ 1 − μ 2 ) S w n 1 + n 2 n 1 n 2 ∼ t ( n 1 + n 2 − 2 ) S w 2 = ( n 1 − 1 ) S 1 2 + ( n 2 − 1 ) S 2 2 n 1 + n 2 − 2 T=\frac{\overline{X}-\overline{Y}-(\mu_1-\mu_2)} {S_{w}\sqrt{\frac{n_1+n_2}{n_1n_2}}} \sim{t(n_1+n_2-2)} \\ S_w^2=\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2} T=Swn1n2n1+n2 XY(μ1μ2)t(n1+n22)Sw2=n1+n22(n11)S12+(n21)S22

你可能感兴趣的:(概率论)