- Laravel框架下通过DB获取数据并转为数组的方法
kkk1622245
数据库laraveloracle
在Laravel框架中,获取数据库信息并将其转换为数组是一种常见的操作,特别是在处理数据导出、API响应等场景中。Laravel提供了简洁而强大的数据库抽象层,旨在简化这类操作。接下来,我们将探讨几种在Laravel中通过数据库抽象层(DBFacade)获取数据并转换为数组的方法。使用DBFacadeLaravel的DBfacade提供了直接访问数据库的功能。你可以执行查询并获得结果,然后轻松地将
- 深度学习五大模型:CNN、Transformer、BERT、RNN、GAN详细解析
深度学习
卷积神经网络(ConvolutionalNeuralNetwork,CNN)原理:CNN主要由卷积层、池化层和全连接层组成。卷积层通过卷积核在输入数据上进行卷积运算,提取局部特征;池化层则对特征图进行下采样,降低特征维度,同时保留主要特征;全连接层将特征图展开为一维向量,并进行分类或回归计算。CNN利用卷积操作实现局部连接和权重共享,能够自动学习数据中的空间特征。适用场景:广泛应用于图像处理相关的
- 算力技术创新驱动多场景应用演进
智能计算研究中心
其他
内容概要算力技术创新正成为数字经济时代的基础性驱动力,从异构计算架构的多元融合到量子计算的颠覆性突破,技术演进不断突破物理与算法的双重边界。在工业互联网场景中,边缘计算通过分布式节点实现毫秒级响应,支撑智能制造产线的实时控制;智能安防系统依托深度学习模型与流计算技术,完成海量视频数据的动态解析;而科学计算领域通过分布式计算与模型压缩技术,将基因测序、气候模拟等复杂任务的效率提升至新量级。值得注意的
- DeepSeek高能低耗AI创作突破
智能计算研究中心
其他
内容概要随着人工智能技术向垂直领域加速渗透,生成式模型的应用边界正经历革命性拓展。DeepSeek系列产品通过670亿参数混合专家架构,构建起覆盖学术研究、内容创作与编程开发的多模态解决方案。该架构融合视觉语言理解与多语言处理能力,在保持高响应速度的同时,显著降低算力消耗,其单位计算成本仅为同类产品的三分之一。值得关注的是,系统搭载的DeepSeekProver学术引擎可自动生成文献综述框架,而D
- AI模型技术前沿与跨场景应用实践
智能计算研究中心
其他
内容概要当前AI模型技术正呈现多维度突破与跨领域融合的特征。从技术演进角度看,可解释性模型与量子计算框架的协同发展正在突破传统黑箱限制,而联邦学习、自适应优化等技术则为复杂场景建模提供了新的方法论支撑。应用层面,TensorFlow与PyTorch框架在医疗影像诊断、金融时序预测等领域的实战案例,验证了深度学习模型在垂直行业的泛化能力。值得关注的是,工具链整合已成为技术落地的关键环节,MXNet与
- 算力未来演进与多场景创新
智能计算研究中心
其他
内容概要算力作为数字经济的核心生产力,其技术架构与应用场景正经历多维突破。从技术架构层面来看,异构计算通过整合CPU、GPU、FPGA等多元芯片实现性能跃升,边缘计算则借助分布式节点降低时延并提升响应效率,而量子计算在特定领域的指数级加速潜力已进入验证阶段。在应用场景维度,工业互联网通过实时数据分析优化产线效率,智能安防依托视频流结构化处理增强预警能力,元宇宙则依赖高密度渲染与低延迟传输构建沉浸式
- 融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
在深度学习的背景下,NVIDIA的CUDA与AMD的ROCm框架缺乏有效的互操作性,导致基础设施资源利用率显著降低。随着模型规模不断扩大而预算约束日益严格,2-3年更换一次GPU的传统方式已不具可持续性。但是Pytorch的最近几次的更新可以有效利用异构计算集群,实现对所有可用GPU资源的充分调度,不受制于供应商限制。本文将深入探讨如何混合AMD/NVIDIAGPU集群以支持PyTorch分布式训
- 深度学习框架PyTorch——从入门到精通(4)数据转换
Fansv587
Torch框架学习深度学习pytorch人工智能python经验分享
转换(Transforms)很多时候,数据并不总是以训练机器学习算法所需的最终处理形式出现。所以我们需要使用变换对数据进行一些处理,使其适合训练。所有TorchVision数据集都有两个参数——transform来修改特征,target_transform来修改标签——接受包含转换逻辑的可调用项。torchvision.transform模块提供了几个开箱即用的转换。FashionMNIST数据集
- Java Stream 流的介绍
吱屋猪_
java
介绍在Java8中,引入了StreamAPI,它为处理集合(如List、Set等)提供了一种更简洁、声明式的方式。Stream流的设计目标是支持对数据集合的高效操作,尤其是能够进行链式操作、并行处理等,极大地提升了代码的可读性和可维护性。本文将介绍JavaStream流的基础概念、常用操作以及如何利用Stream进行集合数据处理。1.什么是Stream流Stream是Java8引入的一个新的类,它
- 深度学习框架PyTorch——从入门到精通(5)构建神经网络
Fansv587
Torch框架学习深度学习pytorch神经网络经验分享
构建神经网络获取训练设备定义类模型层nn.Flattennn.Linearnn.ReLUnn.Sequentialnn.Softmax模型参数补充说明argmax神经网络是由一些层或者模块组成的,这些层和模块会对数据进行各种操作。在PyTorch里,torch.nn这个命名空间提供了你搭建自己神经网络所需要的所有基础组件。PyTorch里的每一个模块都是nn.Module类的子类。一个神经网络本身
- Selenium 中并行测试的重要性
测试大大怪
selenium测试工具单元测试测试用例压力测试jmeter功能测试
随着技术的进步,测试解决方案变得更具可扩展性,加速了团队从手动测试到Selenium测试自动化的转型。但是成年人的世界,没有什么是容易的。对于许多团队来说,并行运行多个测试仍然是不可扩展的。他们倾向于遵循传统的顺序执行测试方法,但是这需要大量时间、精力。这时候,就需要一种更加高效的测试方法,来解决这些问题。并行测试并行测试是指在多个计算机或处理器上同时运行测试用例,以提高测试效率和准确性的测试方法
- Windows 图形显示驱动开发-WDDM 3.0功能- IOMMU DMA 重新映射(一)
程序员王马
windows图形显示驱动开发驱动开发
概述直到WDDM3.0,Dxgkrnl仅支持通过1:1物理重新映射实现IOMMU隔离,这意味着GPU访问的逻辑页被转换为相同的物理页码。IOMMUDMA重新映射允许GPU通过不再以1:1映射的逻辑地址访问内存。相反,Dxgkrnl能够提供逻辑上连续的地址范围。Dxgkrnl对GPU施加限制:GPU必须能够访问所有物理内存才能启动设备。如果GPU的最高可见地址不超过系统上安装的最高物理地址,则Dxg
- 从混乱到高效:企业如何利用CMDB优化资产管理与战略决策
运维
在数字化转型加速的今天,企业在面对海量且日益复杂的IT资产和系统配置时,往往会出现数据混乱、信息孤岛和决策盲区等问题。对于许多企业来说,如何从混乱中抽丝剥茧,实现有效管理和科学决策,已成为一个亟待解决的问题。配置管理数据库(CMDB)就是在这样的背景下应运而生的,它为企业搭建了一个统一、权威的资产和配置管理平台,帮助企业优化运营、降低风险、提高战略决策水平。如果您的企业拥有庞大而复杂的IT环境,需
- Linux中部署DeepSeek R1
Java探索者 °
linux服务器语言模型
一、首先了解DeepSeek-R1模型规格B则是指“billion”的意思,也就是十亿,表示这个模型有多少亿个参数。DeepSeek-R1本地部署硬件需求表模型规模GPU需求CPU需求内存需求存储需求备注1.5B-GTX16504GB(可选)四核i5/Ryzen3000+16GBDDR450GBSSD需4-bit量化,CPU推理延迟约10-30秒/回答,适合基础文本生成7BRTX306012GB或
- Hyperlane:轻量、高效、安全的 Rust Web 框架新选择
LTPP
安全rust前端githubssl开发语言后端
Hyperlane:轻量、高效、安全的RustWeb框架新选择在Web开发的世界中,框架的选择往往决定了项目的效率与未来。Hyperlane,一款基于Rust语言打造的轻量级Web框架,正以其卓越的性能、简洁的设计和可靠的安全性,迅速成为开发者的新宠。无论你是追求极致性能的资深程序员,还是希望快速上手的初学者,Hyperlane都能为你带来惊喜。让我们一起走进Hyperlane的世界,探索它的魅力
- 生物分子仿真软件: Desmond_(3).分子动力学模拟基础
kkchenjj
分子动力学2模拟仿真分子动力学仿真模拟
分子动力学模拟基础1.分子动力学模拟的基本概念分子动力学(MolecularDynamics,MD)模拟是一种计算方法,用于研究分子系统在不同时间和空间尺度下的行为。通过解决牛顿运动方程,MD模拟可以提供分子系统的详细动力学信息,包括原子位置、速度和加速度。这些信息对于理解生物分子的结构、功能和相互作用至关重要。1.1牛顿运动方程分子动力学模拟的核心是牛顿运动方程,它可以描述每个原子在系统中的运动
- 深度学习框架PyTorch——从入门到精通(5)自动微分
Fansv587
深度学习pytorch人工智能
使用torch.autograd自动微分张量、函数和计算图计算梯度禁用梯度追踪关于计算图的更多信息张量梯度和雅可比乘积在训练神经网络时,最常用的算法是反向传播。在该算法中,参数(模型权重)根据损失函数的梯度相对于给定参数进行调整。为了计算这些梯度,PyTorch有一个内置的微分引擎,名为torch.autograd。它支持为任何计算图自动计算梯度。考虑最简单的一层神经网络,具有输入x、参数w和b以
- 消融实验(Ablation Study)
xwhking
深度学习机器学习深度学习消融实验
消融实验(AblationStudy)定义:消融实验是一种科学研究方法,通过逐步移除模型、算法或系统中的某个组件(如模块、层、特征、数据等),观察其对整体性能的影响,从而验证该组件的必要性和有效性。其名称来源于医学领域的“消融术”(切除部分组织以研究功能),在计算机视觉、机器学习和深度学习中被广泛用于分析模型设计。为什么要做消融实验?1.验证组件的有效性核心目的:确认模型中某个设计(如注意力机制、
- 静态网页模板 静态网站模板下载
非凡网站
phphtml
开发一个功能强大且设计精美的网站往往是一项艰巨的任务。此时,静态网页模板便成为了理想的解决方案。它们不仅能够快速搭建出一个简洁、高效的网站,还能在不牺牲用户体验的前提下,大幅降低开发成本和时间投入。本文将为您详细介绍静态网页模板的优势、选择方法以及如何获取高质量的模板资源。企业网站源码5000多套:Yunbuluo.Net一、静态网页模板的优势(一)加载速度快静态网页模板的核心优势在于其轻量级的结
- 金融租赁系统的创新发展与市场竞争力提升探讨
红点租赁系统开发
其他
内容概要随着经济的快速发展,金融租赁系统逐渐成为金融市场中不可或缺的一环。它不仅提供了灵活的资金解决方案,还促进了企业的资本结构优化与资源配置效率。因此,了解该系统的市场背景与发展现状至关重要。在现今环境下,新兴技术如人工智能、大数据和区块链等正加速推动金融租赁的创新。通过这些技术,不仅可以优化业务流程,提升运营效率,还可以增强风险管理能力。例如,利用数据分析可以实时监测租赁资产的风险,从而采取相
- Spring Boot 整合 Redis 使用教程
小小鸭程序员
springjavaspringbootmysqlredis
Redis是一种高性能的键值存储数据库,常用于缓存、会话管理和消息队列等场景。SpringBoot通过SpringDataRedis提供了简洁的整合方式。1.环境准备1.1添加依赖在pom.xml中添加Redis依赖(SpringBoot3.x):org.springframework.bootspring-boot-starter-data-redisredis.clientsjedis2.配置
- 数据集格式转换——json2txt、xml2txt、txt2json【复制就能用】
kay_545
YOLO11改进有效涨点python人工智能机器学习
秋招面试专栏推荐:深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转本专栏所有程序均经过测试,可成功执行专栏地址:YOLO11入门+改进涨点——点击即可跳转欢迎订阅目录json2txt脚本xml2txttxt2json
- AI人工智能深度学习算法:在量子计算中的应用
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着科技的不断发展,人工智能和量子计算成为了当今世界的热门话题。人工智能的深度学习算法在处理大规模数据和复杂任务方面取得了显著的成果,而量子计算则具有强大的并行计算能力和高效的信息处理能力。将人工智能与量子计算相结合,为解决一些具有挑战性的问题提供了新的思路和方法。本文将探讨人工智能深度学习算法在量子计算中的应用,包括其背景、意义和应用场景。2.核心概念与联系在人工智能中,深度学习是一
- SvelteKit 最新中文文档教程(5)—— 页面选项
前言Svelte,一个语法简洁、入门容易,面向未来的前端框架。从Svelte诞生之初,就备受开发者的喜爱,根据统计,从2019年到2024年,连续6年一直是开发者最感兴趣的前端框架No.1:Svelte以其独特的编译时优化机制著称,具有轻量级、高性能、易上手等特性,非常适合构建轻量级Web项目。为了帮助大家学习Svelte,我同时搭建了Svelte最新的中文文档站点。如果需要进阶学习,也可以入手我
- 近期docker镜像加速器被封杀,需要的请看此内容 点赞加关注
加油干sit!
dockerdocker
{“registry-mirrors”:[“https://docker.m.daocloud.io”],“insecure-registries”:[“harbor.sunya.com”],“exec-opts”:[“native.cgroupdriver=systemd”],“data-root”:“/data/docker”,“log-driver”:“json-file”,“log-opt
- 还在为找图发愁?图生生AI以图生图,一键生成专属风格!
图生生
人工智能aiAI作画图生生
你是否也遇到过这样的烦恼:想为文章配图,却找不到风格合适的图片?设计海报时,灵感枯竭,不知从何下手?看到喜欢的图片风格,却无法应用到自己的作品中?别担心,图生生AI生图来帮你!只需上传一张图片,AI就能自动生成相似风格的图片,让你轻松拥有专属图库!图生生AI生图是一款基于人工智能技术的图片生成工具,它能够深度学习和理解图片的风格、色彩、构图等元素,并以此为基础生成全新的图片。无论你是设计师、自媒体
- 深度学习中的Channel,通道数是什么?
%KT%
深度学习深度学习人工智能
参考文章:直观理解深度学习的卷积操作,超赞!-CSDN博客如何理解卷积神经网络中的通道(channel)_神经网络通道数-CSDN博客深度学习-卷积神经网络—卷积操作详细介绍_深度卷积的作用-CSDN博客正文:在跑深度学习代码的过程中,经常遇到的一个报错是:模型尺寸不匹配的问题。一般pytorch中尺寸/张量的表现方式是:torch.size([16,3,24,24])。这四个参数的含义如下:16
- AI人工智能深度学习算法:搭建可拓展的深度学习模型架构
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
深度学习、模型架构、可拓展性、神经网络、机器学习1.背景介绍深度学习作为人工智能领域最前沿的技术之一,在图像识别、自然语言处理、语音识别等领域取得了突破性的进展。深度学习模型的成功离不开其强大的学习能力和可拓展性。本文将深入探讨深度学习算法的原理、模型架构设计以及可拓展性的关键要素,并通过代码实例和实际应用场景,帮助读者理解如何搭建可拓展的深度学习模型架构。2.核心概念与联系深度学习的核心概念是人
- 大模型工程师学习日记(五):基于LangServe的AI服务架构深度解析
MMMMMMMay Love Code
学习架构语言模型深度学习人工智能git
1.概述LangServe️帮助开发者将LangChain可运行和链部署为RESTAPI。该库集成了FastAPI并使用pydantic进行数据验证。Pydantic是一个在Python中用于数据验证和解析的第三方库,现在是Python中使用广泛的数据验证库。它利用声明式的方式定义数据模型和Python类型提示的强大功能来执行数据验证和序列化,使您的代码更可靠、更可读、更简洁且更易于调试。。它还可
- 远程调试Python脚本之ptvsd
工头阿乐
PyTorch深度学习python开发语言
深度学习文章目录深度学习前言前言有时候需要远程调试Python脚本,怎么办呢…以下这段代码用于远程调试Python脚本,特别是通过VisualStudioCode(VSCode)的远程调试功能。它会在指定的服务器IP和端口上等待调试器的连接。#检查是否提供了服务器IP和端口ifargs.server_ipandargs.server_port:#远程调试-参见https://code.visual
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在