回归基础整理

标准误与标准差

https://zhidao.baidu.com/question/373404626.html
https://www.youtube.com/watch?v=3L9ZMdzJyyI (讲解bse的由来)

回归标准差

https://www.51dongshi.com/eedfgbsdrgr.html
https://blog.csdn.net/weixin_39861669/article/details/110216635?spm=1001.2101.3001.6661.1&utm_medium=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-110216635-blog-110216633.pc_relevant_multi_platform_whitelistv4&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-110216635-blog-110216633.pc_relevant_multi_platform_whitelistv4&utm_relevant_index=1 (回归系数的标准差)
https://www.statsmodels.org/dev/generated/statsmodels.regression.linear_model.OLSResults.bse.html

逻辑斯蒂回归

鲁棒线性回归

https://zhuanlan.zhihu.com/p/374101696
https://zhuanlan.zhihu.com/p/435519152
https://www.zhihu.com/question/62127796
https://blog.csdn.net/qq_37353105/article/details/80640591
https://developer.nvidia.com/zh-cn/blog/dealing-with-outliers-using-three-robust-linear-regression-models/
http://www.manongjc.com/detail/31-xuyuypiditnvvqa.html(sklearn实现)

局部加权线性回归

https://blog.csdn.net/qq_54434938/article/details/124070560

相关知识

分布函数与密度函数

分布函数和密度函数的关系:已知连续型随机变量的密度函数,可以通过讨论及定积分的计算求出其分布函数。

参考代码

https://github.com/liuslnlp/plume/blob/master/plume/utils.py

你可能感兴趣的:(回归,机器学习,人工智能)