第二章 材料的性能
1、布氏硬度
布氏硬度的优点:测量误差小,数据稳定。
缺点:压痕大,不能用于太薄件、成品件及比压头还硬的材料。
适于测量退火、正火、调质钢,
铸铁及有色金属的硬度(硬度少于450HB)。
2、洛氏硬度
HRA用于测量高硬度材料, 如硬质合金、表淬层和渗碳层。
HRB用于测量低硬度材料, 如有色金属和退火、正火钢等。
HRC用于测量中等硬度材料,如调质钢、淬火钢等。
洛氏硬度的优点:操作简便,压痕小,适用范围广。
缺点:测量结果分散度大。
3、维氏硬度
维氏硬度所用载荷小,压痕浅,适用于测量零件表面的薄硬化层、镀层及薄片材料的硬度,载荷可调范围大,对软硬材料都适用。
4、耐磨性是材料抵抗磨损的性能,用磨损量来表示。
分类有黏着磨损(咬合磨损)、磨粒磨损、腐蚀磨损。
5、接触疲劳:(滚动轴承、齿轮)经接触压应力的反复长期作用后引起的一种表面疲劳剥落损坏的现象。
6、蠕变:恒温、恒应力下,随着时间的延长,材料发生缓慢塑变的现象。
7、应力强度因子:描述裂纹尖端附近应力场强度的指标。
第三章 金属的结构与结晶
1、晶体中原子(分子或离子)在空间的规则排列的方式为晶体结构。为便于描述晶体结构,把每个原子抽象成一个点,把这些点用假想直线连接起来,构成空间格架,称为晶格。
晶格中每个点称为结点,由一系列原子所组成的平面成为晶面。
由任意两个原子之间连线所指的方向称为晶向。
组成晶格的最小几何组成单元称为晶胞。
晶胞的棱边长度、棱边夹角称为晶格常数。
①体心立方晶格
晶格常数用边长a表示,原子半径为√3a/4,每个晶胞包含的原子数为1/8×8+1=2(个)。
属于体心立方晶格的金属有 铁、钼、铬等。
②面心立方晶格
原子半径为√2a/4,每个面心立方晶胞中包含原子数为1/8×8+1/2×6=4(个)
典型金属(金、银、铝、铜等)。
③密排六方晶格
每个面心立方晶胞中包含原子数为为12×1/6+2*1/2+3=6(个)。
典型金属 锌 等。
2、各向异性:晶体中不同晶向上的原子排列紧密程度及不同晶面间距是不同的,所以不同方向上原子结合力也不同,晶体在不同方向上的物理、化学、力学间的性能也有一定的差异,此特性称为各向异性。
晶体中的缺陷
1)点缺陷包括 空位、间隙原子、置换原子。
点缺陷的形成主要是由于原子在以各自的平衡位置为中心不停的作热振动的结果。
2)线缺陷:在三维空间中两维方向尺寸较小,另一维方向的尺寸相对较大的缺陷。
位错是晶格中的某处有一列或若干列原子发生了某些有规律的错排现象。
位错的基本形式:刃型位错、螺型位错。
提高位错密度是金属强化对重要途径之一。
1) 面缺陷:尺寸在一维很小,另两维较大的缺陷。
常见的是:晶界和亚晶界
1.2 凝固
1) 晶体的结晶
自由能的减少量等于在变化过程中所研究的物质可对外界做功的能量。
一个变化的自由能减少,则自发;自由能增加,则非自发。
结晶的温度条件:在该温度下固态自由能<液态自由能
过冷度:理论结晶温度与实际结晶温度之差。过冷度越大,液固之间能量状态差越大,促使液体结晶的驱动力越大。驱动力达到一定值时,结晶才能进行。
冷却速度越快,过冷度越大。
2) 非晶体的结晶
非晶体是一种长程无序,短程有序的混合结构;性质上表现为各向同性。
非晶体的凝固是在一个温度范围内逐渐完成的。
1.2.2金属的结晶
1、液态金属在理论结晶温度以下开始结晶的现象称过冷。理论结晶温度与实际结晶温度的差DT称过冷度, T= T0 –T1
2、金属的结晶过程
金属是由许多外形不规则,位向不同,大小不同的晶粒组成的多晶体。
金属结晶过程中,晶核形成有两种形式:均匀形核和非均匀形核。
由液体中排列规则的原子团形成晶核称均匀形核。
以液体中存在的固态杂质为核心形核称非均匀形核。
3、影响形核和长大的因素及晶粒大小控制
影响形核和长大的重要因素:冷却速度(或过冷度)和难熔杂质。
过冷度较小时,形核率变化低于长大速度,晶核长大速度快,得粗晶粒。
过冷度较大时,形核率的增长快些,得细晶粒。
改变过冷度可控制结晶后晶粒的大小,过冷度可通过冷却速度来控制。
冷却速度越快,过冷度越大,晶粒越细,金属的性能越好(强度、塑性、韧性)。
4、细化晶粒是提高金属材料性能的重要途径之一。(细晶强化)
(1) 增大过冷度
1、金属型代替砂型2、增大金属型厚度3、降低金属型预热温度4、提高液态金属的冷却
能力。
(2) 变质处理,在金属浇注前添加变质剂来改变晶粒的形状或大小的处理方法。
作用:1.增大形核率;2.降低长大速率。
附加振动法(机械振动、超声波振动、电磁振动等)。
5、金属塑性变形后的加热
三个阶段: 回复----再结晶-----晶粒长大
(1)、回复:
1.温度:回=(0.25~0.3)熔
2.注:要消除残余内应力,可采用回复处理,进行一次250~300摄氏度的低温回火
(2)、再结晶:
1.再结晶:固态下,晶粒外形变化,但晶格类型不变
2.影响:冷变形强化现象消失,残余内应力完全消失
3.温度:T再=0.4T熔
4.冷加工-----在T再以下的加工过程
热加工-----在T再以上的加工过程
第四章 二元合金
合金:由两种或两种以上的金属元素或金属元素与非金属元素组成的,具有金属特性的物质。
组元:组成合金的、最基本的单元。(组成合金的元素或稳定的化合物)
相: 合金中具有相同的物理、化学性能并与该系统的其余部分以界面分开的物质部分。
组织:用金相观察法,在金属及合金内部看到的涉及晶体或晶粒的大小、方向、形状、排列状况等组成关系的构造情况。
相变:在一定条件下一种相转变成另一称相。
二、
1、固态合金中有两类基本相:固溶体和金属化合物。
①固溶体:合金在固态下,组元间会相互溶解,形成在某一组元晶格中包含其他组元的固相。
溶剂:基础金属 溶质:合金元素
固溶体一般具有与溶质金属相同的晶体结构
a) 置换固溶体:溶质原子代替一部分溶剂原子占据溶剂晶格中某些结点的位置。
b) 间隙固溶体:溶质原子嵌入各结点间的间隙中。
固溶强化:由于溶质原子的溶入,使固溶体的晶格发生畸变,变形抗力增大,合金的强度、硬度升高。
②金属间化合物:合金组元形成晶格类型与任一组元都不相同的新相。 表达式:AmBn
特点:熔点较高,硬度很高,脆性高。 例如:渗碳体 Fe3C
弥散强化:金属间化合物作为强化相弥散分布在固溶体基础上,以提高其强度、硬度及耐磨性。
二元合金相图
一、相图:表达温度、成分和相之间的关系,表明合金系中不同成分合金在不同温度下,由哪些相组成以及这些相之间平衡关系的图形。
二、类型
1)匀晶相图
①定义:两组元在液态和固态均能无限互溶。
②杠杆定律
③枝晶偏析:晶粒的成分不均匀现象。 均匀化退火
2)共晶相图:
①两组元在液态无限互溶,在固态有限溶解,并发生共晶反应时所构成的相图。
②共晶反应:Lc→(共晶温度)αd +βe
产物是由两个固相组成的机械混合物,称为共晶体。
共晶体
显微组织:两相交替分布,细小分散。
3)包晶相图及其他相图
包晶相图:两组元在液态下无限互溶,在固态有限溶解,并发生包晶反应时的相图。
铁碳合金相变基础知识
铁碳平衡相图
1.主要特性点
书上图4-19 简化的Fe-Fe3C相图中各特性点的温度、碳质量分数及含义
点的符号 |
温度/℃ |
碳质量分数/% |
说 明 |
A C D E F G K P S Q |
1538 1148 1227 1148 1148 912 727 727 727 600 |
0 4.30 6.69 2.11 6.69 0 6.69 0.0218 0.77 0.0057 |
纯铁溶点 共晶点,LC→AE+Fe3C 渗碳体溶点 碳在γ-Fe中的最大溶解度 渗碳体 α-Fe→γ-Fe同素异构转变点(A3) 渗碳体成分点 碳在α-Fe中的最大溶解度 共析点,AS→FP+ Fe3C 600℃时碳在α-Fe中的溶解度 |
2.主要特性线
a、ACD线和AECF线 ACD线是液相线,AECF线是固相线。
b、ECF线 共晶线温度1148℃。
c、PSK线 共析线温度727℃,又称A1线。
d、GS线 A3线。
e、ES线 Acm线。
f、PQ线 碳在铁素体中的溶解度线。
3.相区
单相区 F、A、L和Fe3C四个。
两相区 L+A、L+Fe3C、A+F、F+Fe3C和A+Fe3C五个。
一、基本相
固溶体:铁素体F 奥氏体A
金属间化合物:渗碳体 Fe3C
1)F:碳在α-Fe中形成的间隙固溶体(体心立方)
特性:强度、硬度不高,塑性和韧性良好。
2)A:碳在γ-Fe中形成的间隙固溶体(体心立方)
特性:良好的塑性和较低的变形抗力,适于压力加工。
3)Fe3C:碳浓度超过固溶体溶解度后,多余的碳与铁形成金属间化合物,含碳量为6.69%。
特性:硬度高、脆性大,作为强化相存在。
二、相图分析
1)共晶反应 ECF为共晶线 L4.30%→(1148℃)A2.11% + Fe3C
Ld莱氏体:共晶混合物
2)共析反应 PSK为共析线 A0.77%→(727℃)F0.02185 + Fe3C
P珠光体:共析混合物
四、含碳量对铁碳合金组织性能的影响
1.铁碳含金的组织随着含碳量的增加,其铁素体相对量减少,珠光体相对量增多,渗碳体与莱氏体相对量增多;
2.铁碳合金的力学性能随着含碳量的增加,其强度、硬度增高,而塑性、韧性降低。但当WC>1.0%时,因为有网状Fe3C存在,所以强度下降。
五、钢在加热时的转变
1. 奥氏体形成过程
钢在加热时珠光体向奥氏体的转变过程称为奥氏体化。该过程遵循形核和长大的相变基本规律,它通过以下四个基本阶段来完成,如图3.33所示。
1) 奥氏体形核
2) 奥氏体晶核长大
3) 残余渗碳体溶解
4) 奥氏体成分均匀化
(a) 形核 (b) 长大 (c) 残余Fe3C溶解 (d) A均匀化
图3.33 共析钢的奥氏体形成过程示意图
2. 奥氏体晶粒度及其影响因素
钢加热时所获得的奥氏体晶粒大小,对冷却转变后钢的性能影响很大。晶粒细小均匀,冷却后钢的组织则弥散,强度与塑性、韧性较高。
a)起始晶粒度:奥氏体化刚刚完成时的晶粒大小
特点: 难以测量,在实际生产中意义不大
b) 实际晶粒度: 钢在某一具体加热条件下获得的奥氏体晶粒大小(直接影响钢冷却后的力学性能)
特点:细小均匀,但提高温度或延长保温时间会使晶粒长大。
c) 本质晶粒度: 钢在规定加热条件下(930℃±10℃保温3h~8h)加热时奥氏体晶粒长大的倾向,可分为两类:1本质细晶粒钢:晶粒长大倾向小2本质粗晶粒钢:晶粒长大倾向大
钢中加入合金元素对奥氏体化主要有下列影响:1)延缓钢的奥氏体化过程
2)细化奥氏体晶粒
2、合金的结晶只有在缓慢冷却条件下才能得到成分均匀的固溶体。但实际冷速较快,结晶时固相中的原子来不及扩散,使先结晶出的枝晶轴含有较多的高熔点元素(如Cu-Ni合金中的Ni), 后结晶的枝晶间含有较多的低熔点元素(如Cu-Ni合金中的Cu)。
3、在一个枝晶范围内或一个晶粒范围内成分不均匀的现象称作枝晶偏析。
4、冷速越大,液固相线间距越大,枝晶偏析越严重。
5、当两组元在液态下完全互溶,在固态下有限互溶,并发生共晶反应时所构成的相图称作共晶相图。
6、在一定温度下,由一定成分的液相同时结晶出两个成分和结构都不相同的新固相的转变称作共晶转变或共晶反应。
7、共晶组织,固态金属自高温冷却时,从同一母相中同时析出,紧密相邻的两种或多种不同的相构成的组织。
8、共晶组织中的相称共晶相。
9、共析反应(共析转变)是指在一定温度下,由一定成分的固相同时析出两个成分和结构完全不同的新固相的过程。
10、固溶体合金液固相线间距越大、偏析倾向大, 树枝晶发达, 流动性降低, 补缩能力下降, 分散缩孔增加.
11、共晶合金结晶温度低,流动性好,缩孔集中, 偏析小, 铸造性能好。
12、直接从液相中结晶出的固相称一次相或初生相。
13、由已有固相析出的新固相称二次相或次生相。
14、组织组成物是指组成合金显微组织的独立部分。【注意组织组成物和相组成物的区别】
15、含碳量为0.0218% ~2.11%的称钢
16、含碳量为 2.11%~ 6.69%的称铸铁。
17、亚共析钢随含碳量增加,P 量增加,钢的强度、硬度升高,塑性、韧性下降。
18、含碳量对工艺性能的影响
① 切削性能: 中碳钢合适
② 可锻性能: 低碳钢好
③ 焊接性能: 低碳钢好
④ 铸造性能: 共晶合金好
⑤ 热处理性能: 以后章节介绍
第五章 金属的塑性变形与再结晶
1、滑移的定义和现象;(采用挂图和幻灯讲解),这里有五个问题:滑移线、滑移带、滑移距离、滑移面和滑移方向;
2、 滑移系:一个滑移面和一个滑移方向构成一个滑移系,滑移系的数目决定了金属的塑性好坏,其数目越多,塑性越好;
体心立方晶格:6×2=12个滑移系;塑性较低好;如铁、铬等;
面心立方晶格:4×3=12个滑移系;塑性最好;如金、银、铜、铝等;
密排六方晶格:1×3=3个滑移系;塑性最差;如锌、镉等;
3、滑移的机理:非刚性滑动,而是由位错的移动实现的。
1) 只有位错线附近的少数原子移动;
2) 原子移动的距离小于一个原子间距;
总结:金属的塑性变形是由滑移这种方式进行的,而滑移又是通过位错的移动实现的。所以,只要阻碍位错的移动就可以阻碍滑移的进行,从而提高了塑性变形的抗力,使强度提高。金属材料常用的五种强化手段(固溶强化、加工硬化、晶粒细化、弥散强化、淬火强化)都是通过这种机理实现的。
4、滑移是指晶体的一部分沿一定的晶面和晶向相对于另一部分移动了原子间距的整数倍
5、滑移部位:滑移常沿晶体中原子密度最大的晶面和晶向发生。因原子密度最大的晶面和晶向之间原子间距最大,结合力最弱,产生滑移所需切应力最小。
6、滑移系:滑移系越多,金属发生滑移的可能性越大,塑性也越好,其中滑移方向对塑性的贡献比滑移面更大。
7、孪生是指晶体的一部分沿一定晶面和晶向相对于另一部分所发生的切变。
8、随冷塑性变形量增加,金属的强度、硬度提高,塑性、韧性下降的现象称加工硬化。
1、加热可使原子扩散能力增加,金属将依次发生回复、再结晶和晶粒长大
2、回复是指在加热温度较低时,由于金属中的点缺陷及位错近距离迁移而引起的晶内某些变化
3、最低再结晶温度:T再≈0.4T熔
4、加热温度越高,保温时间越长,金属的晶粒越粗大,加热温度的影响尤为显著。
5、当变形度很小时,晶格畸变小,不足以引起再结晶.
6、当超过临界变形度后,随变形程度增加,变形越来越均匀,再结晶时形核量大而均匀,使再结晶后晶粒细而均匀,达到一定变形量之后,晶粒度基本不变。
7、金属经冷变形后, 组织处于不稳定状态, 有自发恢复到稳定状态的倾向。但在常温下,原子扩散能力小,不稳定状态可长时间维持。
8、回复是指在加热温度较低时,由于金属中的点缺陷及位错近距离迁移而引起的晶内某些变化。在回复阶段,金属组织变化不明显,其强度、硬度略有下降,塑性略有提高,但内应力、电阻率等显著下降。
9、去应力退火:(也是回复的过程)将冷变形金属低温加热,既稳定组织又保留加工硬化的热处理方法。金属组织变化不明显,其强度、硬度略有下降,塑性略有提高,但内应力、电阻率等显著下降。
10、再结晶:冷变形组织在加热时重新彻底改组的过程。金属的强度、硬度下降,塑性、韧性提高,加工硬化消失。晶粒的形状开始发生变化,由破碎拉长的晶粒变为新的完整的等轴晶粒。再结晶也是一个晶核形成和长大的过程,但不是相变过程。
11、把消除加工硬化的热处理称为再结晶退火
12、晶粒粗大会使金属的强度下降,尤其是塑性和韧性降低 。
13、低于再结晶温度的加工称为冷加工,而高于再结晶温度的加工称为热加工。
14、提高塑性变形抗力的途径:
1)细化晶粒
2)形成固溶体
3)形成第二相
4)采用冷加工变形
二、提高塑性变形抗力的途径
(1)细化晶粒
σs = σ0+Kd-1/2 d晶粒尺寸, σ0、K材料常数
(2)形成固溶体
固溶后,基体晶格畸变,滑移面变得“粗糙”,位错运动阻力↑,如淬火
(3)形成第二相
弥散分布的第二相可以阻碍位错运动,第二相粒径<0.1-0.2μ时,这种阻挡效果最好
(4)采用冷加工变形
冷加工造成加工硬化,即位错密度↑,位错运动受阻。
第六章 金属热处理及材料改性
1、在临界点以上加热,目的是获得均匀的奥氏体组织,称奥氏体化。
2、奥氏体的形成过程
第一步 奥氏体晶核形成:首先在a与Fe3C相界形核。
第二步 奥氏体晶核长大:g 晶核通过碳原子的扩散向a 和Fe3C方向长大。
第三步 残余Fe3C溶解: 铁素体的成分、结构更接近于奥氏体,因而先消失。残余的Fe3C 随保温时间延长继续溶解直至消失。
第四步 奥氏体成分均匀化:Fe3C溶解后,其所在部位碳含量仍很高,通过长时间保温使奥氏体成分趋于均匀。
3、处于临界点A1以下的奥氏体称过冷奥氏体。过冷奥氏体是非稳定组织,迟早要发生转变。随过冷度不同,过冷奥氏体将发生珠光体转变、贝氏体转变和马氏体转变三种类型转变。
4、退火:(完全退火、等温退火、球化退火、去应力退火)将工件加热到临界点(Ac1、Ac3)以上或以下某一温度经过适当保温后缓慢冷却,一般是随炉冷却的一种工艺操作过程。
目的:(1)改善组织和使成分均匀化,以提高钢的性能。
(2)消除不平衡的强化状态。
(3)经过重结晶以细化晶粒、改善组织,为最终热处理做好组织上的准备。
5、正火:将钢加热到Ac3或Accm以上30~50℃,经适当保温后在空气中冷却的一种操作工艺。
目的:(1)普通构件的最终热处理,正火可使粗大组织细化、均匀化。
(2)重要零件的预先热处理。
(3)对于过共析钢、轴承钢和工具钢等用正火消除钢状Fe3C,以利于球化退火,同时细化晶粒,并为淬火做组织准备。
正火和退火的选择:低碳钢(正火),中、高碳钢(退火)
6、淬火:将钢加热到Ac3或Ac1以上30~50℃,经保温烧透后快冷,使A向M转变
的一种操作工艺过程。
目的:提高钢的强度和硬度,得到的组织是M (淬火温度不能过低和太高)
冷却介质的确定:
水:用于形状简单和大截面碳钢零件的淬火。
盐水:用于形状简单和截面尺寸较大的碳钢工件的淬火。 油:用于合金钢和小尺寸碳钢工件的淬火。
熔融盐碱:用于形状复杂、尺寸较小和变形要求较严格的零件,经常用于分级淬火和等温淬火的工艺。
淬硬性:钢淬火时的硬化能力。
淬透性::以在规定条件下钢试样淬硬温度和改变分布表征的材料特性称为淬透性。
7、回火:将淬火钢加热到Ac1以下某一温度,经适当保温后冷却到室温的一种操作工艺过程。
目的:(1)使淬火后的M和A残转变为稳定的组织,防止零件在使用过程中发生尺寸和形状的变化,特别是精密零件。
(2)防止变形和开裂,降低脆性。
(3)通过回火调整零件的强度、硬度、塑性和韧性,以满足对零件设计和使用的要求。
回火时性能的变化:随回火温度升高,强度和硬度下降,塑性和韧性增加。
①低温回火(100~250摄氏度) 回火马氏体
②中温回火(250~500摄氏度) 回火托氏体
③高温回火(500~650摄氏度) 回火索氏体
调质处理=淬火+高温回火
注:退火和正火为预备热处理,淬火和回火为最终热处理。
8、合金元素对钢回火的影响(三方面):
提高回火稳定性
产生二次硬化
回火脆性
9、表面热处理:
a.表面化学热处理(渗碳、渗氮、碳氮共渗及其它)
b.表面淬火(感应加热表面淬火、激光加热表面淬火)
c.化学气相沉积
d.物理气相沉积
e.离子注入
10、金属的合金化:
1. 合金强化:
a. 固溶强化:强化效果的影响因素:1.与溶质原子引起的畸变程度有关
2.与溶质原子的数量有关
注:固溶强化在提高强度、硬度的同时,仍然保持相当好的塑性、韧性
b. 第二相强化:相界面的晶格畸变程度越大或第二相的弥散度越大,强度、硬度越高,对位错运动的阻力作用越大,强化效果也越显著。
第二相的强化效果除了与其本身的性能有关外,还与其形状、分布及大小密度相关
c. 细晶强化
第七章 合金钢
钢的分类和编号
(一) 钢的分类
低碳钢(C<= 0.25%)
碳素钢 中碳钢(C<= 0.30%~0.60%)
高碳钢(C<= 0.60%)
锰 钢
按化学成分分 铬 钢
按合金元素种类分 硼 钢
铬镍钢
合金钢 硅锰刚
低合金钢(合金元素含量< 5%)
按合金元素含量分 中合金钢(合金元素含量为5%~10%)
高合金钢(合金元素含量> 10%)
普 通 钢(S < 0.05% ,P <= 0.045%)
优 质 钢(S <= 0.030 %,P <= 0.035%)
按质量分 高级优质钢(S <= 0.020 %,P <= 0.030%)
特级优质钢(S <= 0.015 %,P <= 0.025%)
建筑工程用钢
工程用钢 桥梁工程用钢
船舶工程用钢
结构钢 车辆工程用钢
调质钢
机器用钢 渗碳钢
按用途分 弹簧钢
轴承钢
刃具钢
工具钢 模具钢
量具钢
不锈钢
特殊钢 耐热钢
耐磨钢
冶炼简单,成本低,具有相当的力学性能(即马马虎虎的性能),能满足工程用刚的良好焊接性,冷成型性(锻压),和较高强度的要求,顾用量很大、
1. 成分特点:碳含量通常在0.4%以下,当强度要求高时,含碳量就去上限(最大值)。在含碳量小于0.2%的低碳钢的基础上,加入少量合金元素(总量小于3%)而形成低合金高强度合金钢。Mn是强化的基本元素,即古榕强化,又降低了A3点,即提高强度又改善塑性和韧性。
2. 热处理特点:这类钢一半不进行而处理,大多在热轧状态下火热轧后正火状态下使用。组织为铁素体和少量珠光体。当然,如有需要,也可以进行相应的热处理。
非金属夹杂物少,质量级别高,一半在热处理后使用。
1. 性能要求:
①良好的塑性和焊接性能。适用于制造冷冲压和焊接件。
②表面硬而耐磨,具有较高韧性和足够强度。适用于在冲击和磨损条件下的零件,如汽车上的变速齿轮,内燃机上的凸轮,活塞销。
③高屈服点,屈强比,高疲劳强度,足够的塑性韧性。
④综合性能好。适用于齿轮,轴类件,连杆。
2. 成分特点:
含碳量:
低碳:含碳量一半在0.25%以下。中碳:一般在0.25%-0.55%,这类钢通常经过调制处理,故也称调制刚。(综合性能好)
中高碳:一般为0.45%-0.85%。主要用于制造弹性元件。
高碳:一般为0.95%-1.15%,保证高硬度和耐磨度。主要用于制造滚动轴承。
合金化特点:(主要是Cr , Ni , Si , Mn 等元素)
3. 热处理特点:机器零件的制造工艺流程一般为:
下料——毛坯成型(锻造等)——预备热处理——粗加工——最终热处理——精加工—装配
①预备热处理(通常是退火或正火),目的是:降低硬度,便于切削,为淬火做好组织准备。
a.完全退火。退火后为F+P(S)
b.球化退火
②最终热处理
a.淬火+高温回火。主要用于调制刚。处理后为回火索氏体。具有良好的综合力学性能。适用于受力复杂的零件,如齿轮,连杆,螺栓等。
b.淬火+中温回火。主要用于弹簧钢名主力后为回火托式体。具有高弹性极限,屈服点,和屈强比。
c.淬火+低温回火。主要用于滚动轴承钢,处理后的组织为回火马氏体和未融碳化物及参与奥氏体。具有高硬度耐磨性用于制造各种滚动轴承
d.渗碳+淬火+低温回火。主要用于渗碳钢。
工具钢按化学成分可分为碳素工具钢,低合金工具钢。中合金工具钢和钢合金工具钢。按用途份则分为刃具钢,模具钢和量具钢。
1. 性能要求:高硬度,高耐磨,高耐热,足够的韧性塑性。
2. 成分特点
含碳量:中碳:一般为0.3%-0.6%主要用于热做模具钢。高碳:一般为0.65%-1.35%。主要用于碳素工具钢,地和经工具钢和高速钢。超高碳:1.4%-2.3%。主要用于高铬冷作工具钢
合金化特点:低合金化:合金元素小于5%。中高合金化:合金元素大于5%
3. 锻造与热处理特点
锻造
预备热处理
⑴完全退火 用于热做模具钢
⑵球化退火 用于碳素工具钢,低合金工具钢,高速钢,冷作模具钢和部分热做模具钢。
最终热处理
⑴淬火+高温回火
⑵正常淬火+低温回火(一次硬化法)
⑶高温淬火+多次高温回火(二次硬化法){具体参见课本91页}
1. 不锈钢
一. 金属腐蚀的一般概念:得失电子。
二. 成分特点:
含碳量:低碳或超低碳,一般小于0.2%。含碳量越低,则晶间腐蚀倾向越小,耐蚀性越好。中碳或高碳,一般都是马氏体不锈钢
合金化特点:Cr, Ni是主要元素
一, 热处理特点:淬火+回火,主要用于马氏体不锈钢
固溶处理 常用于奥氏体不锈钢。
第八章 铸铁
含碳量在2%以上的铁碳合金。工业用铸铁一般含碳量为2%~4%。碳在铸铁中多以石墨形态存在,有时也以渗碳体形态存在。除碳外,铸铁中还含有1%~3%的硅,以及锰、磷、硫等元素。合金铸铁还含有镍、铬、钼、铝、铜、硼、钒等元素。碳、硅是影响铸铁显微组织和性能的主要元素。
铸铁可分为:
① 灰口铸铁。含碳量较高(2.7%~4.0%),碳主要以片状石墨形态存在,断口呈灰色,简称灰铁。熔点低(1145~1250℃),凝固时收缩量小,抗压强度和硬度接近碳素钢,减震性好。用于制造机床床身、汽缸、箱体等结构件。
② 白口铸铁。碳、硅含量较低,碳主要以渗碳体形态存在,断口呈银白色。凝固时收缩大,易产生缩孔、裂纹。硬度高,脆性大,不能承受冲击载荷。多用作可锻铸铁的坯件和制作耐磨损的零部件。
③ 可锻铸铁。由白口铸铁退火处理后获得,石墨呈团絮状分布,简称韧铁。其组织性能均匀,耐磨损,有良好的塑性和韧性。用于制造形状复杂、能承受强动载荷的零件。
④ 球墨铸铁。将灰口铸铁铁水经球化处理后获得,析出的石墨呈球状,简称球铁。比普通灰口铸铁有较高强度、较好韧性和塑性。用于制造内燃机、汽车零部件及农机具等。
⑤ 蠕墨铸铁。将灰口铸铁铁水经蠕化处理后获得,析出的石墨呈蠕虫状。力学性能与球墨铸铁相近,铸造性能介于灰口铸铁与球墨铸铁之间。用于制造汽车的零部件。
⑥ 合金铸铁。普通铸铁加入适量合金元素(如硅、锰、磷、镍、铬、钼、铜、铝、硼、钒、锡等)获得。合金元素使铸铁的基体组织发生变化,从而具有相应的耐热、耐磨、耐蚀、耐低温或无磁等特性。用于制造矿山、化工机械和仪器、仪表等的零部件。
铸铁的分类
分类方法 分类名称 说明
1.按断口颜色分
(1)灰铸铁 这种铸铁中的碳大部分或全部以自由状态的片状石墨形式存在,其断口呈暗灰色,有一定的力学性能和良好的被切削性能,普遍应用于工业中
(2)白口铸铁 白口铸铁是组织中完全没有或几乎完全没有石墨的一种铁碳合金,其断口呈白亮色,硬而脆,不能进行切削加工,很少在工业上直接用来制作机械零件。由于其具有很高的表面硬度和耐磨性,又称激冷铸铁或冷硬铸铁
(3)麻口铸铁 麻口铸铁是介于白口铸铁和灰铸铁之间的一种铸铁,其断口呈灰白相间的麻点状,性能不好,极少应用
2.按化学成分分
(1)普通铸铁 是指不含任何合金元素的铸铁,如灰铸铁、可锻铸铁、球墨铸铁等
(2)合金铸铁 是在普通铸铁内加入一些合金元素,用以提高某些特殊性能而配制的一种高级铸铁。如各种耐蚀、耐热、耐磨的特殊性能铸铁
3.按生产方法和组织性能分
(1)普通灰铸铁 参见“灰铸铁”
(2)孕育铸铁 这是在灰铸铁基础上,采用“变质处理”而成,又称变质铸铁。其强度、塑性和韧性均比一般灰铸铁好得多,组织也较均匀。主要用于制造力学性能要求较高,而截面尺寸变化较大的大型铸件
(3)可锻铸铁 可锻铸铁是由一定成分的白口铸铁经石墨化退火而成,比灰铸铁具有较高的韧性,又称韧性铸铁。它并不可以锻造,常用来制造承受冲击载荷的铸件
(4)球墨铸铁 简称球铁。它是通过在浇铸前往铁液中加入一定量的球化剂和墨化剂,以促进呈球状石墨结晶而获得的。它和钢相比,除塑性、韧性稍低外,其他性能均接近,是兼有钢和铸铁优点的优良材料,在机械工程上应用广泛
(5)特殊性能铸铁 这是一种有某些特性的铸铁,根据用途的不同,可分为耐磨铸铁、耐热铸铁、耐蚀铸铁等。大都属于合金铸铁,在机械制造上应用较广泛
铸铁-热处理工艺
1.消除应力退火
由于铸件壁厚不均匀,在加热,冷却及相变过程中,会产生效应力和组织应力。另外大型零件在机加工之后其内部也易残存应力,所有这些内应力都必须消除。去应力退火通常的加热温度为500~550℃保温时间为2~8h,然后炉冷(灰口铁)或空冷(球铁)。采用这种工艺可消除 铸件内应力的90~95%,但铸铁组织不发生变化。若温度超过550℃或保温时间过长,反而会引起石墨化,使铸件强度和硬度降低。
2.消除铸件白口的高温石墨化退火
铸件冷却时,表层及薄截面处,往往产生白口。白口组织硬而脆、加工性能差、易剥落。因此必须采用退火(或正火)的方法消除白口组织。退火工艺为:加热到550-950℃保温2~5 h,随后炉冷到500-550℃再出炉空冷。在高温保温期间 ,游高渗碳体和共晶渗碳体分解为石墨和A,在随后护冷过程中二次渗碳体和共析渗碳体也分解,发生石墨化过程。由于渗碳体的分解,导致硬度下降,从而提高了切削加工性。
3.球铁的正火
球铁正火的目的是为了获得珠光体基体组织,并细化晶粒,均匀组织,以提高铸件的机械性能。有时正火也是球铁表面淬火在组织上的准备、正 火分高温正火和低温正火。高温正火温度一般不超过950~980℃,低温正火一般加热到共折温度区间820~860℃。正火之后一般还需进行四人处理,以消除正火时产生的内应力。
4.球铁的淬火及回火
为了提高球铁的机械性能,一般铸件加热到Afc1以上30~50℃(Afc1代表加热时A形成终了温度),保温后淬入油中,得到马氏体组织。为了适当降低淬火后的残余应力,一般淬火后应进行回火,低温回火组织为回火马氏作加残留贝氏体再加球状石墨。这种组织耐磨性好 ,用于要求高耐磨性,高强度的零件。中温回火温度为350-500℃回火后组织为回火屈氏体加球状石墨,适用于要求耐磨性好、具有一定效稳定性和弹性的厚件。高温 回火温度为500-60D℃,回火后组织为回火索氏作加球状石墨,具有韧性和强度结合良好的综合性能,因此在生产中广泛应用。
5.球铁的多温淬火
球铁经等温淬火后可以获得高强度,同时兼有较好的塑性和韧性。多温淬火加热温度的选择主要考虑使原始组织全部A化、不残留F,同时也避免A晶粒长大。加热温度一般采用Afc1以上30~50℃,等温处理温度为0~350℃以保证获得具有综合机械性能的下贝氏体组织。稀土镁铝球铁等 温淬火后σb=1200~1400MPa,αk=3~3.6J/cm2,HRC=47~51。但应注意等温淬火后再加一道回火工序。
6.表面淬火
为了提高某些铸件的表面硬度、耐磨性及疲劳强度,可采用表面淬火。灰铸铁及球铁铸件均可进行表面淬火。一般采用高(中) 频感应加热表面淬火和电接触表面淬火。
7.化学热处理
对于要求表面耐磨或抗氧化、耐腐蚀的铸件,可以采用类似于钢的化学热处理工艺,如气体软氯化、氯化、渗硼、渗硫等处理。
铸铁的焊接性
铸铁含碳量高,塑性差,组织不均匀,焊接性很差,在焊接时,一般容易出现以下问题:
1、焊后易产生白口组织
2、焊后易出现裂纹
3、焊后易产生气孔
因此,在生产中,铸铁是不作为焊接材料的.一般只用来焊补铸铁件的铸造缺陷以及局部破坏的铸铁件。铸铁的焊补一般采用气焊或焊条电弧焊。
第九章 有色金属及其合金
5.3.1铝及其合金
1》纯铝
1、 比重小,比强高。
2、 具有优良的物理化学性能,导电、导热性好
3、 加工性能好,焊接性能好。
2》铝合金分类
根据成分和工艺性能特点分为:形变铝合金,铸造铝合金(结合书中P107图5-3-1
【1】 形变铝合金
(1) 防锈铝合金:代号“LF”,所含合金元素锰、镁,主要作用是产生固溶强化和提高耐腐蚀性。
(2) 硬铝合金:代号“LY”时效处理强化
(3) 超硬铝:代号“LC”,室温强度最高
(4) 锻造铝合金:代号“LD”,固溶处理和人工时效强化
【2】 铸造铝合金:代号“ZL”,常用铸造铝合金分为al-si,al-mg,al-cu,al-zn系,应用最广的是AL-SI系合金
(1) 铝硅铸造铝合金{举例ZL102}
(2) 其他铸造铝合金:铸造铝铜合金,铸造铝镁合金,铸造铝锌合金
5.3.2铜及其合金
1》纯铜
(1)又称为紫铜,相对密度为8.96,熔点为1083度。具有良好的导电、导热性以及抗大气腐蚀性抗磁性金属
(2)工业纯铜有T1T2T3T4四个牌号,T后数字越大,纯度越低
2》黄铜
(1) 以ZN为主要合金元素,用H+平均含铜量
(2) 普通黄铜的组织和性能受含锌量的影响,工业黄铜中的锌含量不超过47%
(3) 根据退火组织分为单相黄铜和双相黄铜
(4) 为了改善黄铜的某些性能加入一些其他的合金元素
3》青铜
工业上以铝、硅、铍、锰、铅、钛等为主加元素的铜合金
编号为“Q+主加元素符号+主加元素含量”铸造青铜前面加Z
[1]锡青铜
(1)以SN为主加元素,组织性能与含SN量有关{见书上P113图5-3-8}
(2)含SN量低于8%的塑性好,适于压力加工,成为压力加工锡青铜,大于10%成为铸造锡青铜
【2】铝青铜
(1) 以铝为主加元素,力学性能受含铝量的影响{书P114图5-3-9}
(2) 强度高、抗腐蚀性和铸造型均好
【3】 铍青铜
(1) 进行固溶时效处理,力学性能与含BE量及时效处理工艺有关
(2) 主要用于制造精密仪器、仪表的弹性元件、耐磨零件等
5.3.3轴承合金
编号为“ZCH+基本元素+主加元素+主加元素含量+辅加元素含量”
1》 锡基轴承合金
是SN-SB-CU系合金,膨胀系数和摩擦系数小,良好的导热、抗蚀性和工艺性,适于制造重要的轴承
2》 铅基轴承合金
是PB-SB-SN-CU系合金,性能低于锡基轴承合金,但是由于价格便宜,常用作低速、低载荷的轴承材料
3》 其他轴承合金
铜基、铝基轴承合金
5.3.4其他有色金属及其合金
1》钛及其合金
(1)钛是银白色金属,相对密度小,熔点为1668度,导热性差
(2)钛合金分为:三类
2》镁及其合金
(1)镁的相对密度为1.74,具有很高的化学活性,易在空气中形成疏松多孔的氧化膜
(2)镁合金可以分为加工镁合金、铸造镁合金
制造飞行器中的零件
4》 锌及其合金
(1)锌的熔点低,抗大气腐蚀性良好,再结晶温度在室温以下
(2)铝、铜、镁等为锌的主要合金元素,对锌合金产生明显的强化作用
(3)锌合金可分为变形合金和铸造合金两类
第十二章 铸造
1、铸造是将液态合金浇注到具有与零件形状相适应的铸型空腔中,待其冷却凝固后获得零件或毛胚的方法。
2、液态合金充满铸型空腔,获得形状完善、轮廓清晰的能力——液态合金的充型能力
影响充型能力的主要因素如下:
①合金的流动性:液态合金本身流动能力称为合金流动性。
②浇注条件
③铸型的充填条件
3、在铸件凝固过程中,其断面存在三个区域,即固相区、凝固区和液相区。而对铸件质量影响较大的主要是液相与固相并存凝固区的宽窄。
4、液态合金在冷凝过程中,若其液态收缩和凝固收缩所缩减的体积得不到及时补充,则在铸件最后凝固部分形成孔洞。按孔洞大小分布分为缩孔和缩松。
5、热应力是由于铸件壁厚不均匀,冷却速度不同在同一时间内铸件各部分收缩不一样而引起的 。同时凝固—减少热应力
6、变形的产生:具有残留内应力的铸件,厚的部位受拉应力、薄的部位受压应力。
7、熔模铸造又称为失蜡铸造,它是利用易熔的蜡质材料制成精确的蜡模,又称为精密铸造。
8、金属型铸造是将液态合金浇入金属铸型,以获得铸件的一种铸造方法—永久铸造。
9、压力铸造:指在高压作用下,使液态或半液态金属以高速压入金属铸型中,并在压力下凝固以获得铸件的一种工艺方法。压铸是在压铸机上进行铸型称压型。
第十三章 压力加工
1、塑性变形:冷变形、热变形、温变形,以T再(再结晶温度)为区分。
2、锻造流线:钢锭成分中分布在晶界上的杂质随着晶粒变形被拉长,在再结晶时金属晶粒形状改变,杂质沿着被拉长方向保留下来,形成纤维状组织。
3、可锻性:衡量材料经受压力加工难易程度的工艺性能。
4、自由锻:利用外力使金属在上下两个砧铁之间产生变形,从而得到所需形状及尺寸的锻件。
5、高合金钢锻造特点:合金元素含量很高,内部组织复杂、缺陷多、塑性差、锻造时难度较大。
6、冲压:通过模具对材料施以外力,使之产生塑性变形和分离从而获得一定形状、尺寸与机械性能的零件加工方法。
7、分离工序是使坯料的一部分与另一部分相互分离的工序。如落料、冲孔、切断、修整。
① 落料―被分离部分为成品,而周边是废料
② 冲孔―被分离部分为废料,而周边是成品
第十四章 焊接
1、焊接: 是将分离的金属,用局部加热或加压手段,借助于原子间的结合,以形成永久性连接的方法。
2、手工电弧焊:用手工操纵电焊条,以电焊条和焊件之间产生的电弧为热源进行焊接的熔化焊方法。
3、焊接电弧:指发生在电极与工件间的气体介质中长时间的放电现象,即强烈而持久的气体放电现象。
4、焊条选用
a、等强度原则—选用与母材同强度等级的焊条;
b、同成分原则—按母材化学成分选用相应成分焊条;
c、抗裂纹原则—选用抗裂性好的碱性焊条;
d、抗气孔原则—对油污、铁锈等清理不便,选用抗气孔能力↑酸性焊条;
e、低成本原则。
5、焊接接头就是有焊缝和焊接热影响区组成。
⑴焊缝区 ⑵热影响区①熔合区② 过热区③ 正火区 ④ 部分相变区
6、埋弧焊的特点
(1)生产率高 (2)焊接质量高且稳定 (3)节省金属和电能 (4)劳动条件好
7、焊接性概念:指被焊金属在一定的焊接工艺条件下获得优质焊接接头能力。
① 工艺焊接性— 金属材料通过焊接加工形成完整焊接接头的能力(结合性能)。
② 使用焊接性— 形成焊接接头在使用条件下完全运行的能力。
8、通常把钢材在焊接过程中产生裂纹的倾向作为评价其焊接性的指标,影响裂纹倾向的主要因素是化学成分,而C最显著
9、减少焊接应力和变形的措施
(1) 预留收缩变形量;
(2)反变形法
(3)刚性固定法
(4)选择合理的焊接顺序
(5)焊前预热和焊后缓冷