.pt .pth .pkl:它们并不是在格式上有区别,只是后缀不同而已(仅此而已)
torch.load
resnet18.load_state_dict()
# 此处调用torchvision中已有的model
import torch
import torchvision.models as models # 预训练模型都在这里面
resnet18 = models.resnet18(pretrained=True) # 加载预训练模型和参数
resnet18 = models.resnet18(pretrained=False) # 模型没有预训练,导入模型结构
resnet18.load_state_dict(torch.load('resnet18.pth')) # 加载预先下载好的预训练参数到resnet18
alexnet = models.alexnet() # ❓是默认会预训练么(查)
# dir = 'xxxx/resnet18.pth'
import torch
import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
# 方式一:只保存模型权重参数
# 注意:resnet18可以替换为任意模型
torch.save(resnet18.state_dict(), 'xxxx/resnet18.pth') # 只保存模型权重参数,不保存模型结构
resnet18.load_state_dict(torch.load('xxxx/resnet18.pth')) # 这里根据模型结构,调用存储的模型参数
dir = 'mymodel.pth'
state = {'net':model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch':epoch}
torch.save(state, dir) # 权重参数包括了模型权重、优化器权重、epoch
checkpoint = torch.load(dir) # checkpoint 把之前save的state加载进来
model.load_state_dict(checkpoint['net'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch'] + 1
dir = 'xxxx/resnet18.pth'
import torch
import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
torch.save(resnet18, dir) # 保存整个model的状态
resnet18_load = torch.load(dir) # 这里已经不需要重构模型结构了,直接load就可以
已知的有两种打印方式
#encoding:utf-8
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import numpy as mp
import matplotlib.pyplot as plt
import torch.nn.functional as F
from torchsummary import summary
#define model
class TheModelClass(nn.Module):
def __init__(self):
super(TheModelClass,self).__init__()
self.conv1=nn.Conv2d(3,6,5)
self.pool=nn.MaxPool2d(2,2)
self.conv2=nn.Conv2d(6,16,5)
self.fc1=nn.Linear(16*5*5,120)
self.fc2=nn.Linear(120,84)
self.fc3=nn.Linear(84,10)
def forward(self,x):
x=self.pool(F.relu(self.conv1(x)))
x=self.pool(F.relu(self.conv2(x)))
x=x.view(-1,16*5*5)
x=F.relu(self.fc1(x))
x=F.relu(self.fc2(x))
x=self.fc3(x)
return x
def main():
# Initialize model
model = TheModelClass()
#Initialize optimizer
optimizer=optim.SGD(model.parameters(),lr=0.001,momentum=0.9)
# 打印方式一:直接打印网络
print('model:')
print(model)
#print model's state_dict
print('############################################################')
print('Model.state_dict:')
for param_tensor in model.state_dict():
#打印 key value字典
print(param_tensor,'\t',model.state_dict()[param_tensor].size())
#print optimizer's state_dict
print('############################################################')
print('Optimizer,s state_dict:')
for var_name in optimizer.state_dict():
print(var_name,'\t',optimizer.state_dict()[var_name])
# 打印方式二:模型导入设备后打印
print('############################################################')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
t = model.to(device)
summary(model=t, input_size= (3, 32, 32))
if __name__=='__main__':
main()
输出结果
'''
model: # 这种直接print(model)的方式打印不全
TheModelClass(
(conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
############################################################
Model.state_dict:
conv1.weight torch.Size([6, 3, 5, 5])
conv1.bias torch.Size([6])
conv2.weight torch.Size([16, 6, 5, 5])
conv2.bias torch.Size([16])
fc1.weight torch.Size([120, 400])
fc1.bias torch.Size([120])
fc2.weight torch.Size([84, 120])
fc2.bias torch.Size([84])
fc3.weight torch.Size([10, 84])
fc3.bias torch.Size([10])
############################################################
Optimizer,s state_dict:
state {}
param_groups [{'lr': 0.001, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}]
############################################################
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 6, 28, 28] 456
MaxPool2d-2 [-1, 6, 14, 14] 0
Conv2d-3 [-1, 16, 10, 10] 2,416
MaxPool2d-4 [-1, 16, 5, 5] 0
Linear-5 [-1, 120] 48,120
Linear-6 [-1, 84] 10,164
Linear-7 [-1, 10] 850
================================================================
Total params: 62,006
Trainable params: 62,006
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 0.06
Params size (MB): 0.24
Estimated Total Size (MB): 0.31
----------------------------------------------------------------
'''