- 因果推理与因果学习原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
因果推理与因果学习原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:因果关系发现、因果推断、因果学习、机器学习、统计方法1.背景介绍1.1问题的由来在现实世界的数据分析中,我们经常面临这样的挑战:从观察数据中识别出潜在的原因与效果之间的关联,并理解这些关联背后的实际机制。传统的预测建模关注于基于输入变量对输出变量进行预测,
- 【Flask开发】嘿马文学web完整flask项目第2篇:2.用户认证,Json Web Token(JWT)【附代码文
flaskpython前端后端
教程总体简介:2.目标1.1产品与开发1.2环境配置1.3运行方式1.4目录说明1.5数据库设计2.用户认证JsonWebToken(JWT)3.书架4.1分类列表5.搜索5.3搜索-精准&高匹配&推荐6.小说6.4推荐-同类热门推荐7.浏览记录8.1配置-阅读偏好8.配置9.1项目部署uWSGI配置启动9.部署10.1异常和日志10.补充10.2flask-restful1.项目目录实现3.数据
- CRC3校验算法
安庆平.Я
C/C++语言总结java前端服务器c语言unixlinux算法
C在线工具|菜鸟工具CRC3,16位数据校验使用,多项式g(x)=x3+x+1->0b1011#include#includeuint8_tCrc3(constuint32_tdata,uint8_tlen){uint8_tchk=0x08;uint8_tpoly=0x03;/*多顶式1011*/uint8_tpoly_len=4;uint8_talu=0x00;alu=(data>>len-po
- 22种创新思路!今年必将是特征选择爆发的一年
小唯啊小唯
人工智能注意力机制特征选择
2025深度学习发论文&模型涨点之——特征选择特征选择是机器学习和数据挖掘领域中一个非常重要的步骤。它指的是从原始特征集合中挑选出对目标变量有较强预测能力的特征子集。在实际的数据集中,往往包含众多特征,但并非所有特征都对模型的性能有正面影响。例如在房价预测任务中,原始特征可能包括房屋的面积、房间数量、所在小区、周边配套设施等众多内容。通过特征选择,可以剔除一些无关的或者冗余的特征,比如可能存在的重
- Java核心技术 卷I:基础知识
千灵域
java读书笔记java
第一章Java程序设计概述太简单了,直接略过。1.2Java“白皮书”的关键术语简单性:指相对于C++简单(指针、多重继承等),但设计者也并没有试图清楚C++中所有不适当的特性面向对象:java与C++主要不同在于多重集成,以及接口概念网络技能健壮性安全性体系结构中立可移植性解释性:过去Java解释器可以在任何移植了解释器的机器上执行java字节码,现在使用即使编译器将字节码再翻译成机器码高性能多
- Python基础(吃洋葱小游戏)
aaiier
pythonpygame开发语言
下面我将为你设计一个"吃洋葱小游戏"的Python实现方案,使用Pygame库开发。这个游戏模拟吃洋葱的过程,玩家需要收集不同种类的洋葱以获得高分,同时避免吃到辣椒。吃洋葱小游戏-Python实现方案1.游戏设计概念游戏目标:玩家控制角色吃掉尽可能多的洋葱获得高分核心机制:洋葱从屏幕上方随机下落玩家左右移动角色接住洋葱不同洋葱有不同分值(普通洋葱+10,红洋葱+20,紫洋葱+50)辣椒会扣减生命值
- 数据分类 - 华为OD机试真题(JavaScript 题解)
什码情况
华为odjavascript开发语言数据结构算法机试
华为OD机试题库《C++》限时优惠9.9华为OD机试题库《Python》限时优惠9.9华为OD机试题库《JavaScript》限时优惠9.9针对刷题难,效率慢,我们提供一对一算法辅导,针对个人情况定制化的提高计划(全称1V1效率更高)。看不懂有疑问需要答疑辅导欢迎私VX:code5bug题目描述对一个数据a进行分类,分类方法为:此数据a(四个字节大小)的四个字节相加对一个给定的值b取模,如果得到的
- Java设计模式之抽象工厂模式(Abstract Factory)笔记
ikwil
设计模式专栏java设计模式抽象工厂模式
目录什么叫做抽象工厂模式抽象工厂模式作用抽象工厂模式特征对比抽象工厂和工厂方法抽象工厂模应用场景抽象工厂模式的实现定义抽象工厂接口实现具体产品类定义抽象工厂接口实现具体工厂类进行测试总结参考文献什么叫做抽象工厂模式抽象工厂模式(AbstractFactoryPattern)是一种创建型设计模式,用于提供一个接口,使得客户端能够创建一系列相关或依赖的对象,而无需指定它们的具体类。这个模式有助于确保一
- Deepseek:多轮对话与上下文拼接
chilavert318
熬之滴水穿石ai
今天的内容,应该很好理解。我们先从场景切入来理解。首先,你回想一下,有没有遇到过这样的情况:和朋友聊天时,聊了一会儿,突然朋友说起之前的某个话题,你却有点反应不过来,得努力回忆之前说了啥。人工智能之所以“智能”,因为它就不可能这么健忘。在和Deepseek聊天,在多轮对话中,Deepseek就像一个记忆力超强的小伙伴,能清楚记得你们聊过的每一个重要细节,让对话一直顺顺畅畅。这背后呀,藏着Deeps
- Qt开发:QCustomPlot
倔强老吕
qtQCustomPlot
【官方网站】:QtPlottingWidgetQCustomPlot-IntroductionQCustomPlot是一个用于绘制图形的QtC++库,它使得在Qt程序中创建高质量的2D图表变得简单。这个库非常适合用来展示实时数据,同时它也支持多种输出格式,包括打印质量的矢量图形如PDF文件。以下是QCustomPlot的一些主要特性:提供丰富的2D绘图类型,比如折线图、散点图、柱状图等。支持多轴图
- Qt:QCustomPlot库简介
十秒耿直拆包选手
CandC++QtandPysideQCustomPlot学习qtc++QCustomPlot
QCustomPlot是一个基于Qt框架的轻量级C++绘图库,专为高效绘制二维图表(如曲线图、柱状图、金融图表等)而设计。相比QtCharts模块,它以高性能和高度可定制性著称,尤其适合需要实时数据可视化的科学计算、工业监控和金融分析场景。核心特性概览特性说明轻量高效仅需2个头文件+1个源码文件,零外部依赖实时性能优化处理百万级数据点,支持OpenGL加速多图层系统支持无限图层叠加,独立坐标系交互
- 《网络安全自学教程》- SQL注入漏洞详解
士别三日wyx
《网络安全自学教程》sql数据库网络安全安全web安全
《网络安全自学教程》SQL注入的原理其实很简单:由于后端过滤不严格,把用户输入的数据当成SQL语句执行了。SQL注入1、SQL注入常出现在哪些功能?2、SQL注入危害3、SQL注入分类4、判断是否存在SQL注入5、SQL注入方式6、SQL注入防御6.1、预编译1、SQL注入常出现在哪些功能?凡是涉及「数据库操作的功能」,都有可能存在SQL注入,比如:搜索框等查询功能。用户注册/用户登录功能。密码找
- 【原创】【4】【辅助工具】基于视觉模型+FFmpeg+MoviePy实现短视频自动化二次编辑+多赛道
三块钱0794
ffmpeg音视频自动化
主要功能目录选择-浏览选择包含视频的目录智能扫描-自动递归扫描所有视频文件️赛道管理-从文件夹名自动获取赛道或手动指定实时进度-显示扫描和导入的实时进度双数据库-支持SQLite(推荐)和MySQL重复检测-自动跳过已存在的视频文件使用场景示例假设您的视频目录结构是:D:\短视频\├──外国人系列\│├──1.mp4│├──2.mp4│└──3.mov├──美食系列\│├──美食1.mp4│└──
- 构建全栈式数据库与消息队列服务治理体系:监控、告警与组件搭配实践
喝醉酒的小白
DBAK8s数据库
目录标题分类✅一、分类总览表✅二、详细分类说明1.关系型数据库(RDBMS)2.NoSQL数据库3.分布式系统协调组件4.消息队列系统✅三、按用途分类(实战参考)✅四、开源vs商业(闭源)分类全面的监控指标分类与告警模板清单✅一、通用结构✅二、数据库系统级别详细监控项与告警模板1.MySQL/TiDB/OceanBase2.PostgreSQL/openGauss/GaussDB/KingBase
- 基于python的公众号文章爬取思路(总结版)
大数据小学僧
python开发语言爬虫微信公众平台
目录一、技术方案分类1.接口直连模式(推荐)2.网页解析模式3.第三方API模式二、核心技术栈三、爬虫实现步骤1.接口直连模式(微信公众平台API)2.网页解析模式(搜狗微信搜索)3.第三方API模式(如清博大数据)四、可视化界面实现五、数据存储方案六、高级技巧七、注意事项八、推荐工具链一、技术方案分类1.接口直连模式(推荐)2.网页解析模式3.第三方API模式二、核心技术栈三、爬虫实现步骤1.接
- OpenCV图像噪点消除五大滤波方法
慕婉0307
opencv基础opencv人工智能计算机视觉
在数字图像处理中,噪点消除是提高图像质量的关键步骤。本文将基于OpenCV库,详细讲解五种经典的图像去噪滤波方法:均值滤波、方框滤波、高斯滤波、中值滤波和双边滤波,并通过丰富的代码示例展示它们的实际应用效果。一、图像噪点与滤波基础1.1常见图像噪声类型高斯噪声:符合正态分布的随机噪声椒盐噪声:随机出现的黑白像素点泊松噪声:光子计数噪声量化噪声:模拟信号数字化过程中产生1.2滤波方法分类滤波类型特点
- 容器挂载传播模式学习
岳来
#容器运维学习k8s容器挂载传播
在容器技术中,挂载传播模式(MountPropagationMode)定义了挂载点在主机和容器之间的传播行为。它决定了当主机或容器中的挂载点发生变化时,这些变化是否会影响到其他挂载点。挂载传播模式在多容器共享挂载、动态挂载更新等场景中非常重要。以下是挂载传播模式的详细解释及其分类:1.挂载传播模式的作用挂载传播模式主要用于控制挂载点的变化如何在主机和容器之间传播。例如:当主机上新增一个挂载点时,是
- 【翻译】多标签分类评价指标metrices multi-label classification
surrender2u
NLP自然语言处理
翻译日期:2020-05-15翻译来源:LohithmunakalaAug28,2020MetricsforMulti-LabelClassification原地址:https://medium.com/analytics-vidhya/metrics-for-multi-label-classification-49cc5aeba1c3删减版本正文:用于多标签分类的最常见指标如下:Precisi
- 告别配置地狱:用Kustomize实现多环境一键切换
Star_Sea_77
云原生与DevOps工程实践云原生
告别配置地狱:用Kustomize实现多环境一键切换摘要本文针对软件开发中多环境配置管理的痛点,详细阐述如何利用Kustomize实现不同环境配置的高效管理与一键切换。通过对比Kustomize与Helm的适用场景,为中小团队提供选型指南;揭示ConfigMap热更新失效、Secret硬编码泄露等常见问题并提供解决方案;展示如何通过Kustomize构建高效的配置管理流程,实现80%配置共享、20
- 从决策树到随机森林:Python机器学习里的“树形家族“深度实战与原理拆解
小张在编程
机器学习决策树随机森林
引言在机器学习的算法森林中,有一对"树形兄弟"始终占据着C位——决策树像个逻辑清晰的"老教授",用可视化的树状结构把复杂决策过程拆解成"是/否"的简单判断;而它的进阶版随机森林更像一支"精英军团",通过多棵决策树的"投票表决",在准确性与抗过拟合能力上实现了质的飞跃。无论是医疗诊断中的疾病预测,还是金融风控里的违约判别,这对组合都用强大的适应性证明着自己的"算法常青树"地位。今天,我们就从原理到实
- BaiduSitemap - Typecho站点地图生成与多搜索引擎推送插件
独立开发者阿乐
原创javascript云计算自动化大数据数据分析
文章目录BaiduSitemap-Typecho站点地图生成与多搜索引擎推送插件✨功能特点插件架构核心模块文件结构安装方法方法一:手动安装方法二:Git克隆⚙️配置说明站点地图基本设置搜索引擎配置百度搜索引擎必应(Bing)搜索引擎谷歌(Google)搜索引擎使用指南站点地图访问手动操作站点地图包含内容高级功能图片索引优化推送状态监控技术实现详解站点地图生成流程搜索引擎推送机制缓存机制❓常见问题站
- 【LangGraph】langgraph.store.base 模块:定义持久化键值存储的核心模块
彬彬侠
LangGraphLangGraphstorebase
有条理的详细介绍langgraph.store.base模块langgraph.store.base模块是LangGraph框架中用于定义持久化键值存储的核心模块,提供了标准化的接口和数据结构,以支持状态管理和长时记忆存储。它是LangGraph的重要组成部分,特别适合构建复杂、状态化的多代理应用。本文将从背景、功能、主要组件、使用方法、实际应用及注意事项等方面,详细介绍该模块,帮助开发者理解其设
- PCB设计实践(三十七)PCB机械孔设计全解析:作用原理与设计规范指南
技术流浪者
PCB设计硬件工程PCB设计单片机嵌入式硬件
在PCB设计中,机械孔是实现电路板机械固定、电气连接和功能扩展的核心要素之一。其设计质量直接影响PCB的组装效率、结构稳定性和长期可靠性。本文将从机械孔的基础概念出发,系统阐述其在PCB设计中的作用原理、分类特性、设计规范及进阶技巧,为工程师提供全面的设计指导。一、机械孔的核心作用解析机械孔在PCB中承担着多重关键功能,其作用远超过单纯的物理开孔概念:1.机械固定与结构支撑作为电路板与外壳、散热器
- 深入详解:随机森林算法——概念、原理、实现与应用场景
猿享天开
算法随机森林机器学习
深入详解:随机森林算法——概念、原理、实现与应用场景随机森林(RandomForest,RF)是一种经典的集成学习算法,广泛应用于机器学习任务。本文将通过图文结合的方式,全面解析随机森林的核心原理、实现细节和应用实践,帮助读者建立系统认知。1.核心概念与直观理解1.1什么是随机森林?随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树进行协同预测。其核心思想是"三个臭皮匠,顶个诸葛亮"——多
- 番外篇 | SEAM-YOLO:引入SEAM系列注意力机制,提升遮挡小目标的检测性能
小哥谈
YOLOv8:从入门到实战YOLO深度学习人工智能机器学习计算机视觉神经网络
前言:Hello大家好,我是小哥谈。SEAM(Squeeze-and-ExcitationAttentionModule)系列注意力机制是一种高效的特征增强方法,特别适合处理遮挡和小目标检测问题。该机制通过建模通道间关系来自适应地重新校准通道特征响应。在遮挡小目标检测中的应用优势包括:1)通道注意力增强:SEAM通过全局平均池化捕获通道级全局信息,帮助网络在遮挡情况下仍能关注关键特征。2)多尺度特
- 数据标注师学习内容汇总
试着
数据标注师学习数据标注师
目录文本标注图像标注语音标注文本标注词性标注1词性标注2实体标注关系标注事件标注1事件标注2意图标注关键词标注分类标注问答标注对话标注图像标注拉框标注关键点标注2D标注3D标注线标注目标跟踪标注OCR标注图像分类标注语音标注语音切割转写语音校对标注拼音和停顿标注
- 办公IT问题管理平台(含移动端和PC端的问题提报与工单跟踪)避坑
Alex艾力的IT数字空间
微服务vscode安全tomcatspringboot功能测试ux
一、核心功能模块设计1.问题提报模块多渠道接入支持Web端、移动端(APP/小程序)、邮件、电话、企业微信/钉钉集成等多种提交方式,用户可快速描述问题并上传截图或附件。智能表单:根据用户角色(如员工、部门管理员)动态展示字段(如部门、设备类型、影响范围)。自动分类与优先级:通过关键词识别(如“网络中断”“系统崩溃”)自动分配问题分类,结合预设规则(如影响用户数)设定优先级。用户界面优化移动端:简化
- 庙算兵棋推演AI开发初探(7-神经网络训练与评估概述)
超自然祈祷
智能决策人工智能神经网络深度学习
前面我们提取了特征做了数据集、设计并实现了处理数据集的神经网络,接下来我们需要训练神经网络了,就是把数据对接好灌进去,训练后查看预测的和实际的结果是否一致——也就是训练与评估。数据解析提取数据编码为数据集设计神经网络-->>神经网络训练与评估神经网络一个重要指标是收敛,就是用可以逼近任意函数的神经网络是否可以逼近你数据集中隐含的模式。再重复一遍【特征工程】与【神经网络】的区别:前者就像人发现了牛顿
- 随机森林详解:原理、优势与应用实践
大千AI助手
人工智能Python#OTHER随机森林算法机器学习决策树人工智能DecisionTree数据挖掘
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!随机森林介绍1.定义:随机森林是一种强大的、高度灵活的集成学习(EnsembleLearning)算法,主要用于分类和回归任务。它的核心思想是构建多棵决策树(DecisionTree),并将这些树的预测结果进行组合(例如,分类任务采用投票,回归任务采用
- 集成学习基础:Bagging 原理与应用
大千AI助手
人工智能Python#OTHER集成学习机器学习人工智能算法决策树Bagging
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!Bagging介绍1.定义与全称:Bagging是BootstrapAggregating的缩写,中文常译为装袋法。它是一种并行式的集成学习方法。核心目标是通过构建多个基学习器的预测结果进行组合(通常是投票或平均),来获得比单一基学习器更稳定、更准确、
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓