巨卷时代!如何入门学习自动驾驶中的感知定位融合?

星球介绍

自动驾驶之心知识星球是国内首个以自动驾驶技术栈为主线的交流学习社区,这是一个前沿技术发布和学习的地方,由上海交大校友创办!主要切入自动驾驶感知(分类、目标检测、语义分割、实例分割、全景分割、关键点检测、车道线检测、3D感知、目标跟踪、多模态、多传感器融合等)、自动驾驶定位建图(高精地图、SLAM)、自动驾驶规划控制、领域技术方案(纯视觉方案、视觉+毫米波雷达方案、视觉+Radar+Lidar等多传感器融合方案)、AI模型部署落地(基于TersorRT、NNIE、NCNN等)、行业动态、岗位发布(校招+社招)等方向。

巨卷时代!如何入门学习自动驾驶中的感知定位融合?_第1张图片

星球目前有哪些成员?

星球成员主要来自商汤科技、旷视科技、百度、阿里、网易、Momenta、Intel、Nvidia、大疆、上汽、集度、地平线等业界知名公司,以及上海交大、复旦大学、浙江大学、中科大、南京大学、同济大学、上海科技大学、哈工大、普渡大学、苏黎世理工等国内外知名高校。

知识星球有哪些模块?

CV图文教程:网络结构可视化、算法原理图解;

视频教程:百度优达学城、Apollo自动驾驶、Udacity自动驾驶、MIT自动驾驶等系列视频课程;

日常paper分享:3D检测、多模态、2D检测、分割、车道线、多任务、多目标跟踪、融合、传感器标定、鱼眼感知与模型、VIT、轻量化等;

职位分享:自动驾驶行业职位分享内推;

日常问答交流:和嘉宾星主交流领域学术工业最新进展;

主要面向对象

星球创建的初衷是为了给自动驾驶行业提供一个技术交流平台,包括需要入门的在校本科/硕士/博士生,以及想要转行或者进阶的算法工程人员;除此之外,我们还和许多公司建立了实习/校招/社招内推,包括地平线、百度、蔚来汽车、momenta、赢彻科技、集度、滴滴、Nvidia、高通、纵目科技、魔视智能、斑马汽车、博世、纽劢科技、追势科技、寒武纪等!

如果您是自动驾驶和AI公司的创始人、高管、产品经理、运营人员或者数据/高精地图相关公司,也非常欢迎加入,资源的对接与引进也是我们一直在推动的!

我们坚信自动驾驶能够改变人类未来出行,想要加入该行业推动社会进步的小伙伴们,星球内部准备了基础到进阶模块,算法讲解+代码实现,轻松搞定学习!

重磅!自动驾驶之心知识星球也面向全领域邀请20名行业专家和带头人,您可以是自动驾驶领域中的任何子模块方向,无论是丰富实战经验的算法工程人员还是手持多篇顶会的在校硕博,自动驾驶之心非常欢迎您的加入,我们将免费提供一切资源,欢迎大家加入自动驾驶之心!

星球主要关注方向

1.  计算机视觉相关数据集

数据集是AI任务的基石,然而大多数数据集都是国外机构开源,数据量较大,下载速度缓慢,这两个缺点导致很多研究人员在数据获取上为难,为此星球内部已经为大家准备了近30种计算机视觉和自动驾驶相关数据集,包括KITTI、Waymo Open Dataset、Lyft L5、COCO、Semantic3D、A2D2数据集、车道线数据集、车牌数据集、行人检测数据集、红绿灯检测数据集等,一键下载。

巨卷时代!如何入门学习自动驾驶中的感知定位融合?_第2张图片

2.  2D/3D标定工具

星球内部为大家汇总了2D检测、3D点云检测、语义分割、实例分割、3D点云分割、视频检测、交互标定、多传感器标定等工具,可以快速适配到自己项目中。

巨卷时代!如何入门学习自动驾驶中的感知定位融合?_第3张图片

3.  基础学习资料

整理了从数学基础到图像处理、Opencv、Pytorch以及C++、Python、GPU和Cuda学习资料!

4.  Backbone与Transformer

主要关注常用的轻量化、高性能backbone,以及视觉transformer结构与优化。

巨卷时代!如何入门学习自动驾驶中的感知定位融合?_第4张图片

5.  2D目标检测

关注anchor-based、anchor-free、one-stage、two-stage、超全YOLO系列、小目标检测、多任务模型、长尾分布、误检消除、难例挖掘、定位精度优化等内容;该模块汇总检测领域的经典综述和论文,从结构、数据增强策略、采样策略、不均衡问题、半监督、知识蒸馏上展开研究。

巨卷时代!如何入门学习自动驾驶中的感知定位融合?_第5张图片

6.  分割任务

汇总了常见的语义分割、实例分割、全景分割SOTA算法,并对分割任务中的边缘轮廓分割模糊不细腻问题展开讨论。

巨卷时代!如何入门学习自动驾驶中的感知定位融合?_第6张图片

7.  车道线检测

对基于检测、分割、分类、关键点、曲线预测、多传感器检测、3D车道线SOTA方法进行了汇总,对车道线遮挡、磨损、不连续问题展开了讨论!

巨卷时代!如何入门学习自动驾驶中的感知定位融合?_第7张图片

8.  模型裁剪、量化与部署

TensorRT、NCNN、Opencv、MNN方案部署检测、分割、关键点、分类模型实战。

巨卷时代!如何入门学习自动驾驶中的感知定位融合?_第8张图片

9.  目标跟踪

针对单目标和多目标跟踪,基于Siamese Network、Tracking-by-detection、传统滤波+关联算法、end2end等方法进行全面展开阐述,后续更会加入变速情况下的跟踪系统!

巨卷时代!如何入门学习自动驾驶中的感知定位融合?_第9张图片

10.  3D目标检测

从点云和多模态数据3D检测任务展开,基于点、体素、多视角数据的3D检测方案。

巨卷时代!如何入门学习自动驾驶中的感知定位融合?_第10张图片

11.  传感器标定

主要关注自动驾驶领域常见的Camera、Lidar、Radar、IMU之间的离线、在线标定,多相机、多激光雷达之间的标定,自动标定等。

巨卷时代!如何入门学习自动驾驶中的感知定位融合?_第11张图片

12.  多传感器融合

星球内部汇总了数据级融合、目标级融合、特征级融合、弱融合、不对称融合等多种方案!

巨卷时代!如何入门学习自动驾驶中的感知定位融合?_第12张图片

13.  SLAM与高精地图

汇总了单目SLAM、RGB-D SLAM、激光SLAM、高精地图定位方法、自定位方法!

14.  其它

在感知定位融合之外,还汇总了大量机器人、自动驾驶规划方法,强化学习在运动规划上的应用、V2X技术等!

欢迎加入

欢迎大家扫码加入自动驾驶之心知识星球,我们诚邀前期成员的加入,一起创造一个全技术栈的自动驾驶开发者社区!星球成员的加入平均每天0.2元,欢迎扫码加入一起学习一起卷!

巨卷时代!如何入门学习自动驾驶中的感知定位融合?_第13张图片

星球相关问题也欢迎咨询汽车人兄弟,备注姓名 + 昵称:

巨卷时代!如何入门学习自动驾驶中的感知定位融合?_第14张图片

你可能感兴趣的:(算法,百度,大数据,机器学习,人工智能)