- YOLO各版本原理和优缺点解析
Ash Butterfield
计算机视觉
YOLO(YouOnlyLookOnce)是一种实时目标检测算法,以其高速度和较高精度著称。以下是各版本的详细介绍及优缺点分析:1.YOLOv1(2016年)原理:将输入图像划分为S×SS\timesSS×S的网格,每个网格预测多个边界框和类别置信度。使用单个神经网络直接对图像进行前向传播预测边界框和类别标签。优点:速度快,适合实时应用。模型结构简单,易于实现和训练。缺点:对小目标检测效果差,容易
- 自学人工智能大模型,满足7B模型的训练和微调以及推理,预算3万,如何选购电脑
岁月的眸
人工智能
如果你的预算是3万元人民币,希望训练和微调7B参数规模的人工智能大模型(如LLaMA、Mistral等),你需要一台高性能的深度学习工作站。在这个预算范围内,以下是推荐的配置:1.关键硬件配置(1)GPU(显卡)推荐显卡:NVIDIARTX4090(24GBVRAM)或者RTX3090(24GBVRAM)理由:7B模型推理:24GB显存足够跑7B模型的推理,但全参数训练可能吃力,适合LoRA等微调
- 多模态大模型(LMMs)与大语言模型(LLMs)的比较
大F的智能小课
底层技术解析人工智能语言模型
前言现在的大模型分为两大类:大语言模型(LargeLanguageModels,简称LLMs)和多模态大模型(LargeMultimodalModels,简称LMMs)。本文将从基础定义、输入数据、应用场景、训练过程这几方面讨论下两者的区别。基础定义LLMs(LargeLanguageModels,大型语言模型)-深度学习的应用之一,是基于深度学习的大规模机器学习模型,通常由数十亿到数万亿个参数构
- 【学术投稿-2025年计算机视觉研究进展与应用国际学术会议 (ACVRA 2025)】CSS样式解析:行内、内部与外部样式的区别与优先级分析
禁默
前端学术会议css前端
简介2025年计算机视觉研究进展与应用(ACVRA2025)将于2025年2月28-3月2日在中国广州召开,会议将汇聚世界各地的顶尖学者、研究人员和行业专家,聚焦计算机视觉领域的最新研究动态与应用成就。本次会议将探讨前沿技术,包括深度学习、多模态学习、图像和视频分析、3D重建等,以及其在智能交通、医疗影像、增强现实和自动化等多个实际应用中的创新转化。会议官网:www.acvra.org目录前言一、
- 小白零基础学习深度学习之张量
爱理科的小王子
学习深度学习人工智能
1.张量PyTorch中的张量(Tensor)就是一种用来存储数据的“盒子”,这个盒子可以有不同的形状和大小,里面可以装各种数字。张量是PyTorch中最基本的东西,就像乐高积木一样,你可以用它来搭建各种复杂的模型。2.张量的用途存储数据:你可以把张量当作一个容器,用来存储各种数据。比如,一张图片可以用一个三维张量来表示,其中第一维是颜色通道(红、绿、蓝),第二维和第三维是图片的宽度和高度。进行计
- 深度学习-情感分析
小赖同学啊
人工智能深度学习人工智能
以下将分别使用PyTorch和TensorFlow框架实现基于深度学习的情感分析,这里以影评的情感分析为例,数据集使用IMDB影评数据集。使用PyTorch实现1.安装必要的库pipinstalltorchtorchtextspacypython-mspacydownloaden_core_web_sm2.代码实现importtorchimporttorch.nnasnnimporttorch.o
- 【深度学习】常见模型-GPT(Generative Pre-trained Transformer,生成式预训练 Transformer)
IT古董
深度学习人工智能深度学习gpttransformer
GPT(GenerativePre-trainedTransformer)1️⃣什么是GPT?GPT(GenerativePre-trainedTransformer,生成式预训练Transformer)是由OpenAI开发的基于Transformer解码器(Decoder)的自回归(Autoregressive)语言模型。它能够通过大量无监督数据预训练,然后微调(Fine-tuning)以适应特
- DeepSeek 实现原理探析
rockmelodies
人工智能aideepseek深度学习
DeepSeek实现原理探析引言DeepSeek是一种基于深度学习的智能搜索技术,它通过结合自然语言处理(NLP)、信息检索(IR)和机器学习(ML)等多领域的技术,旨在提供更加精准、智能的搜索结果。本文将深入探讨DeepSeek的实现原理,分析其核心技术及其在实际应用中的表现。一、DeepSeek的核心技术自然语言处理(NLP)词嵌入(WordEmbedding):DeepSeek使用如Word
- 深度学习视频教程推荐
yunTrans
DeepLearning深度学习视频神经网络
推荐一个深度学习视频教程,中文,推导详细。老先生娓娓道来,将神经网络、深度学习讲的非常透彻。由复旦大学吴立德老师教授的课程:http://www.youku.com/playlist_show/id_21508721.html
- 基于深度学习的商品推荐
SEU-WYL
深度学习dnn深度学习人工智能dnn
基于深度学习的商品推荐系统利用深度学习技术对用户的行为和商品的特征进行分析和建模,从而向用户推荐最相关的商品。这类系统在电子商务、社交媒体和内容推荐等领域中具有广泛应用。以下是对这一领域的系统介绍:1.任务和目标商品推荐系统的主要任务和目标包括:个性化推荐:根据用户的兴趣和行为,向用户推荐个性化的商品列表。提高用户体验:通过精准推荐,提高用户的购物体验和满意度。增加销售额:通过推荐相关商品,增加用
- 常见的深度学习模型总结
编码时空的诗意行者
深度学习人工智能
1.深度前馈神经网络(DeepFeedforwardNetworks)发明时间:2006年左右,随着计算能力的提升和大数据集的可用性增加,深度学习开始兴起。发明动机:解决传统机器学习模型在复杂数据上的局限性,如线性模型无法处理非线性关系的数据。模型特点:由多个隐藏层组成的神经网络,每一层的节点与下一层的节点完全连接。应用场景:分类、回归、语音识别、图像识别等。2.卷积神经网络(Convolutio
- 深度学习 视频推荐
小赖同学啊
人工智能深度学习音视频人工智能
以下为你呈现一个基于深度学习实现视频推荐的简化代码示例。这里我们使用的是协同过滤思想结合神经网络的方式,借助TensorFlow和Keras库来构建模型。在这个示例中,假设已有用户对视频的评分数据,目标是预测用户对未评分视频的评分,进而为用户推荐可能感兴趣的视频。1.环境准备要确保你已经安装了必要的库,如numpy、pandas、tensorflow等,可以使用以下命令进行安装:pipinstal
- 23、深度学习-自学之路-激活函数relu、tanh、sigmoid、softmax函数的正向传播和反向梯度。
小宇爱
深度学习-自学之路深度学习人工智能
在使用这个非线性激活函数的时候,其实我们重点还是学习的是他们的正向怎么传播,以及反向怎么传递的。如下图所示:第一:relu函数的正向传播函数是:当输入值(隐藏层)值大于了,就输出自己本身的值。反向梯度传播:当输出值大于0,那么反向梯度值就等于输出值乘以1如果小于0,那反向梯度值就等于0.通俗的来说就是,如果输入值是0或小于0,那么输出值的反向增强就没有。如果输入值大于0,那么输出值的方向增强就有。
- 基于深度学习的半导体检测与预测算法研究(二)
埃菲尔铁塔_CV算法
深度学习人工智能神经网络opencv计算机视觉python
摘要随着半导体行业的飞速发展,对生产过程中的检测和性能预测提出了更高要求。深度学习凭借其强大的数据处理和特征提取能力,在半导体领域展现出巨大的应用潜力。本文详细探讨了深度学习在半导体缺陷检测、工艺参数预测等方面的应用原理和方法,介绍了常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)及其变体在半导体数据处理中的应用,分析了模型训练与优化的关键技术,并通过实际案例验证了深度学习算法在
- 基于深度学习的半导体算法原理及应用
埃菲尔铁塔_CV算法
算法机器学习人工智能计算机视觉深度学习python
摘要随着半导体产业的持续发展,深度学习技术在该领域的应用日益广泛且深入。本文全面阐述了基于深度学习的半导体算法原理,涵盖卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短时记忆网络(LSTM)和门控循环单元(GRU)等在半导体制造过程监测、缺陷检测、性能预测等方面的应用。详细分析了这些算法处理半导体相关数据的机制,探讨了算法实现中的关键技术,如数据预处理、模型训练与优化等。通过实际案例展示
- 计算机视觉国内外研究现状(综述)
埃菲尔铁塔_CV算法
计算机视觉
1.国内外研究进展1.2.1特征提取研究进展特征提取是图像处理的一个重要环节,是进行身份识别和行为识别的重要部分。近年来,针对不同特征的提取,国内外学者提出了许多特征提取算法,同样特征提取的效果大都不错。但是在复杂的猪舍环境中提取猪的特征还是比较困难的。下面针对几种目前常用的特征提取算法进行一些介绍。(1)传统的特征提取算法传统特征提取算法已经发展了很久,现阶段比较成熟,是深度学习算法出来之前研究
- 联想Y7000 2024版本笔记本 RTX4060安装ubuntu22.04双系统及深度学习环境配置
七七@你一起学习
深度学习python
目录1..制作启动盘2.Windows磁盘分区,删除原来ubuntu的启动项3.四个设置4.安装ubuntu5.ubuntu系统配置1..制作启动盘先下载镜像文件,注意版本对应。Rufus-轻松创建USB启动盘用rufus制作时,需要注意选择正确的分区类型和系统类型。不然安装的系统会有问题!2.Windows磁盘分区,删除原来ubuntu的启动项手把手教你调整电脑磁盘的分区大小_调整分区大小-CS
- 图像分类与目标检测算法
BugNest
AI算法分类目标检测ai人工智能图像处理
在计算机视觉领域,图像分类与目标检测是两项至关重要的技术。它们通过对图像进行深入解析和理解,为各种应用场景提供了强大的支持。本文将详细介绍这两项技术的算法原理、技术进展以及当前的落地应用。一、图像分类算法图像分类是指将输入的图像划分为预定义的类别之一。这一过程的核心在于特征提取和分类器的设计。1.特征提取特征提取是图像分类的第一步,其目标是从图像中提取出能够区分不同类别的关键信息。传统的特征提取方
- 精通LangChain:如何使用Unstructured处理多种格式的图像文档
hshahtjtbh
langchainpython
#引言随着人工智能和深度学习的快速发展,文档图像分析(DocumentImageAnalysis,DIA)在许多领域中变得至关重要。然而,处理多种图像格式的文档仍然是一个挑战。本文将介绍如何使用Unstructured库,通过LangChain框架加载和处理多种格式的图像文档,帮助您在DIA任务中实现更高效的工作流程。#主要内容##安装Unstructured在开始之前,确保安装了Unstruct
- 【人工智能】Python中的深度学习优化器:从SGD到Adam
蒙娜丽宁
Python杂谈人工智能人工智能python深度学习
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界在深度学习模型的训练过程中,优化器起着至关重要的作用,它决定了模型的收敛速度以及最终的性能。本文将介绍深度学习中常用的优化器,从传统的随机梯度下降(SGD)到现代的自适应优化器(如Adam)。我们将深入探讨每种优化器的原理、优缺点,并通过Python实现
- 大语言模型的分类及本地部署所需的硬件配置要求
Kelaru
LLM基础知识语言模型分类人工智能
1、大语言模型概念及作用大语言模型:(LargeLanguageModel,LLM)是一种基于深度学习的人工智能模型,它能够理解和生成自然语言[1]。简单来说,它就像一个“超级大脑”,能够处理各种语言任务,比如写文章、回答问题、翻译语言等;它通过训练大量的文本数据,学习语言的结构、语法、语义以及上下文关联,从而能够理解和生成与人类语言相似的文本。举个例子:如果你问它一个问题,比如:“为什么天空是蓝
- 深度学习练手小例子——cifar10数据集分类问题
☆cwlulu
深度学习分类人工智能
CIFAR-10是一个经典的计算机视觉数据集,广泛用于图像分类任务。它包含10个类别的60,000张彩色图像,每张图像的大小是32x32像素。数据集被分为50,000张训练图像和10,000张测试图像。每个类别包含6,000张图像,具体类别包括:飞机(airplane)汽车(automobile)鸟(bird)猫(cat)鹿(deer)狗(dog)青蛙(frog)马(horse)船(ship)卡车
- 毕设项目 基于深度学习的人脸表情识别(源码+论文)
nange12330a
毕业设计毕设大数据
文章目录0前言1项目运行效果2技术介绍2.1技术概括2.2目前表情识别实现技术3深度学习表情识别实现过程3.1网络架构3.2数据3.3实现流程3.4部分实现代码4最后0前言这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计
- 学习系列二:常用目标检测的格式转换脚本文件txt,json等
小啊磊_Vv
目标检测YOLO人工智能计算机视觉json
常用目标检测的格式转换脚本文件txt,json等文章目录常用目标检测的格式转换脚本文件txt,json等前言一、json格式转yolo的txt格式二、yolov8的关键点labelme打的标签json格式转可训练的txt格式三、yolo的目标检测txt格式转coco数据集标签的json格式四、xml格式转yolo数据集标签的txt格式五、根据yolo的目标检测训练的最好权重推理图片六、根据yolo
- 【目标检测】YOLO格式数据集txt标注转换为COCO格式JSON
ericdiii
目标检测目标检测YOLOjson
YOLO格式数据集:images|--train|--test|--vallabels|--train|--test|--val代码:importosimportjsonfromPILimportImage#设置数据集路径dataset_path="path/to/your/dataset"images_path=os.path.join(dataset_path,"images")labels_
- 目标检测:yolo格式txt转换成COCO格式json
詹姆斯德
格式转换目标检测YOLOjson
修改对应文件路径即可,其他根据txt或者希望生成的json做轻微调整#-*-coding:utf-8-*-importosimportjsonfromPILimportImagecoco_format_save_path="/home/admin1/data/LVIS"#要生成的标准coco格式标签所在文件夹yolo_format_classes_path="/home/admin1/data/L
- Java也能玩转机器学习?从零搭建你的第一个模型
prince_zxill
人工智能与机器学习教程java机器学习开发语言人工智能边缘计算
Java也能玩转机器学习?从零搭建你的第一个模型引言:一、打破认知:Java也能玩转机器学习1.1为什么选择Java?1.1.1无缝集成1.1.2JVM的跨平台优势1.1.3高性能计算能力1.1.4多线程与分布式计算1.2主流Java机器学习库全景1.2.1基础数值计算库1.2.2传统机器学习框架1.2.3深度学习生态1.2.4特殊领域工具1.3企业级机器学习架构1.3.1典型技术栈组合1.3.2
- 基于深度学习YOLOv5的海洋动物检测系统
深度学习&目标检测实战项目
深度学习YOLO目标跟踪人工智能目标检测计算机视觉
1.引言随着人工智能技术的快速发展,深度学习在图像处理领域的应用逐渐展现出强大的能力,尤其是在目标检测任务上。YOLO(YouOnlyLookOnce)系列模型作为一种高效的目标检测算法,以其实时性和高精度在许多领域得到了广泛应用。海洋动物的检测任务也因此受益,借助深度学习模型,我们可以实时、自动地检测海洋中的动物,有助于海洋生态研究、环境保护以及水下监测等多个领域。本文将详细介绍如何基于YOLO
- DeepSeek计算机视觉(Computer Vision)基础与实践
Evaporator Core
#DeepSeek快速入门计算机视觉计算机视觉人工智能
计算机视觉(ComputerVision)是人工智能领域的一个重要分支,专注于让计算机理解和处理图像和视频数据。计算机视觉技术广泛应用于图像分类、目标检测、图像分割、人脸识别等场景。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练计算机视觉模型。本文将详细介绍如何使用DeepSeek进行计算机视觉的基础与实践,并通过代码示例帮助你掌握这些技巧。1.计算机视觉的基本概念计算机视觉的
- AI基础 -- AI学习路径图
sz66cm
人工智能学习
人工智能从数学到大语言模型构建教程第一部分:AI基础与数学准备1.绪论:人工智能的过去、现在与未来人工智能的定义与发展简史从符号主义到统计学习、再到深度学习与大模型的变迁本书内容概览与学习路径指引2.线性代数与矩阵运算向量与矩阵的基本概念矩阵分解(特征值分解、奇异值分解)张量运算简介(为后续深度学习做准备)在机器学习和深度学习中的应用示例3.概率论与统计基础随机变量、分布与期望方差贝叶斯理论与最大
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文