【深度学习】特征融合的重要方法 | 张量的拼接 | torch.cat()函数 | torch.add(函数

文章目录

  • 前言
  • 一、torch.cat()函数 拼接只存在h,w(高,宽)的图像
  • 二、torch.cat() 拼接存在c,h,w(通道,高,宽)的图像
  • 三、torch.add()使张量对应元素直接相加


前言

本篇作为后期文章“特征融合”的基础。
特征融合分早融合和晚融合,早融合里的重要手段是concat和add

一、torch.cat()函数 拼接只存在h,w(高,宽)的图像

torch.cat()可以将多个张量合并为一个张量,我们接下来从简单到复杂一点点来盘这个函数

我们首先随机生成两个形状一致的张量:

import torch
A =torch.rand(3,2)  #单通道,高为3.宽为2的张量
B=torch.rand(3,3)   #单通道,高为2.宽为3的张量
print(A)
print(B)

【深度学习】特征融合的重要方法 | 张量的拼接 | torch.cat()函数 | torch.add(函数_第1张图片

让这个张量在第0维度进行拼接,也就是在高这个维度进行拼接:

C=torch.cat((A,B),dim=0)
print(C)
print(C.shape)

【深度学习】特征融合的重要方法 | 张量的拼接 | torch.cat()函数 | torch.add(函数_第2张图片
可以看到高变成了3+3,宽不变

让这个张量在第1维度进行拼接,也就是在宽这个维度进行拼接:

C=torch.cat((A,B),dim=1)
print(C)
print(C.shape)

【深度学习】特征融合的重要方法 | 张量的拼接 | torch.cat()函数 | torch.add(函数_第3张图片
可以看到,高不变,宽变成了2+2

在第0维度拼接时,高可以不一样,但是宽需要一致,不然会报错:

import torch
A =torch.rand(3,3)  #单通道,高为3.宽为2的张量
B=torch.rand(4,3)   #单通道,高为2.宽为3的张量
print(A)
print(B)
C=torch.cat((A,B),dim=0)
print(C)
print(C.shape)

不报错:
在这里插入图片描述

import torch
A =torch.rand(3,3)  #单通道,高为3.宽为2的张量
B=torch.rand(3,5)   #单通道,高为2.宽为3的张量
print(A)
print(B)
C=torch.cat((A,B),dim=0)
print(C)
print(C.shape)

直接报错:
在这里插入图片描述
在第1维度拼接时,高必须一致,宽可以不一样,不然会报错:

import torch
A =torch.rand(3,3)  #单通道,高为3.宽为2的张量
B=torch.rand(3,5)   #单通道,高为2.宽为3的张量
print(A)
print(B)
C=torch.cat((A,B),dim=1)
print(C)
print(C.shape)

不报错:
在这里插入图片描述

import torch
A =torch.rand(3,3)  #单通道,高为3.宽为2的张量
B=torch.rand(4,3)   #单通道,高为2.宽为3的张量
print(A)
print(B)
C=torch.cat((A,B),dim=1)
print(C)
print(C.shape)

【深度学习】特征融合的重要方法 | 张量的拼接 | torch.cat()函数 | torch.add(函数_第4张图片

二、torch.cat() 拼接存在c,h,w(通道,高,宽)的图像

我们随机生成两个3通道的2X2图像

import torch
A =torch.rand(3,2,2)  #单通道,高为3.宽为2的张量
B=torch.rand(3,2,2)   #单通道,高为2.宽为3的张量
print(A)
print(B)

【深度学习】特征融合的重要方法 | 张量的拼接 | torch.cat()函数 | torch.add(函数_第5张图片
【深度学习】特征融合的重要方法 | 张量的拼接 | torch.cat()函数 | torch.add(函数_第6张图片

让他们在第0维度进行拼接(通道维度拼接):
在这里插入图片描述
相当于通道数堆叠了,变成了六个通道

让他们在第1维度进行拼接(高维度拼接):
在这里插入图片描述
让他们在第2维度进行拼接(宽维度拼接):
在这里插入图片描述
这两个堆叠结果就和之前的方法一样了

三、torch.add()使张量对应元素直接相加

import torch
A =torch.rand(3,2,2)  #单通道,高为3.宽为2的张量
B=torch.rand(3,2,2)   #单通道,高为2.宽为3的张量
print(A)
print(B)
C=torch.add(A,B)
print(C)
print(C.shape)

张量A:
【深度学习】特征融合的重要方法 | 张量的拼接 | torch.cat()函数 | torch.add(函数_第7张图片
张量B:
【深度学习】特征融合的重要方法 | 张量的拼接 | torch.cat()函数 | torch.add(函数_第8张图片
相加后张量:
【深度学习】特征融合的重要方法 | 张量的拼接 | torch.cat()函数 | torch.add(函数_第9张图片
当然也可以不用add(A,B) 用A+B

你可能感兴趣的:(pytorch,深度学习,人工智能,python)