365天深度学习训练营-第6周:好莱坞明星识别

目录

一、前言

二、我的环境

三、代码实现

 四、损失函数

1. binary_crossentropy(对数损失函数)

2. categorical_crossentropy(多分类的对数损失函数)

3. sparse_categorical_crossentropy(稀疏性多分类的对数损失函数)

五、VGG-16复现

六、总结并改进

1、VGG总结

2、报错改正

一、前言

>- ** 本文为[365天深度学习训练营](https://mp.weixin.qq.com/s/xLjALoOD8HPZcH563En8bQ) 中的学习记录博客**
>- ** 参考文章:365天深度学习训练营-第6周:好莱坞明星识别(训练营内部成员可读)**
>- ** 原作者:[K同学啊|接辅导、项目定制](https://mtyjkh.blog.csdn.net/)**
● 难度:夯实基础
● 语言:Python3、TensorFlow2
● 时间:8月29-9月2日

 要求:
1. 使用categorical_crossentropy(多分类的对数损失函数)完成本次选题
2. 探究不同损失函数的使用场景与代码实现

 拔高(可选):
1. 自己搭建VGG-16网络框架
2. 调用官方的VGG-16网络框架
3. 使用VGG-16算法训练该模型

 探索(难度有点大)
1. 准确率达到60%

二、我的环境

语言环境:Python3.7

编译器:jupyter notebook

深度学习环境:TensorFlow2

三、代码实现

from tensorflow import keras
from tensorflow.keras import layers, models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow        as tf
import numpy             as np

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]  # 如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  # 设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0], "GPU")

gpus

data_dir = "./48-data/"

data_dir = pathlib.Path(data_dir)

image_count = len(list(data_dir.glob('*/*.jpg')))

print("图片总数为:", image_count)

roses = list(data_dir.glob('Jennifer Lawrence/*.jpg'))
PIL.Image.open(str(roses[0]))

batch_size = 32
img_height = 224
img_width = 224

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.1,
    subset="training",
    label_mode="categorical",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.1,
    subset="validation",
    label_mode="categorical",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

class_names = train_ds.class_names
print(class_names)

plt.figure(figsize=(20, 10))

for images, labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(5, 10, i + 1)

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[np.argmax(labels[i])])

        plt.axis("off")

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995

layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""

model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1. / 255, input_shape=(img_height, img_width, 3)),

    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)),  # 卷积层1,卷积核3*3
    layers.AveragePooling2D((2, 2)),  # 池化层1,2*2采样
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
    layers.AveragePooling2D((2, 2)),  # 池化层2,2*2采样
    layers.Dropout(0.5),
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.AveragePooling2D((2, 2)),
    layers.Dropout(0.5),
    layers.Conv2D(128, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.Dropout(0.5),

    layers.Flatten(),  # Flatten层,连接卷积层与全连接层
    layers.Dense(128, activation='relu'),  # 全连接层,特征进一步提取
    layers.Dense(len(class_names))  # 输出层,输出预期结果
])

model.summary()  # 打印网络结构

# 设置初始学习率
initial_learning_rate = 1e-4

lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
    initial_learning_rate,
    decay_steps=60,  # 敲黑板!!!这里是指 steps,不是指epochs
    decay_rate=0.96,  # lr经过一次衰减就会变成 decay_rate*lr
    staircase=True)

# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)

model.compile(optimizer=optimizer,
              loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping

epochs = 100

# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.h5',
                               monitor='val_accuracy',
                               verbose=1,
                               save_best_only=True,
                               save_weights_only=True)

# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy',
                             min_delta=0.001,
                             patience=20,
                             verbose=1)

history = model.fit(train_ds,
                    validation_data=val_ds,
                    epochs=epochs,
                    callbacks=[checkpointer, earlystopper])

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(len(loss))

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

365天深度学习训练营-第6周:好莱坞明星识别_第1张图片 365天深度学习训练营-第6周:好莱坞明星识别_第2张图片

 四、损失函数

损失函数Loss详解:

1. binary_crossentropy(对数损失函数)

sigmoid 相对应的损失函数,针对于二分类问题。

2. categorical_crossentropy(多分类的对数损失函数)

softmax 相对应的损失函数,如果是one-hot编码,则使用 categorical_crossentropy

调用方法一:

model.compile(optimizer="adam",
              loss='categorical_crossentropy',
              metrics=['accuracy'])

调用方法二:

model.compile(optimizer="adam",
              loss=tf.keras.losses.CategoricalCrossentropy(),
              metrics=['accuracy'])

3. sparse_categorical_crossentropy(稀疏性多分类的对数损失函数)

softmax 相对应的损失函数,如果是整数编码,则使用 sparse_categorical_crossentropy

调用方法一:

model.compile(optimizer="adam",
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

调用方法二:

model.compile(optimizer="adam",
              loss=tf.keras.losses.SparseCategoricalCrossentropy(),
              metrics=['accuracy'])

函数原型

tf.keras.losses.SparseCategoricalCrossentropy(
    from_logits=False,
    reduction=losses_utils.ReductionV2.AUTO,
    name='sparse_categorical_crossentropy'
)

参数说明:

  • from_logits: 为True时,会将y_pred转化为概率(用softmax),否则不进行转换,通常情况下用True结果更稳定;
  • reduction:类型为tf.keras.losses.Reduction,对loss进行处理,默认是AUTO;
  • name: name

五、VGG-16复现

def VGG16(nb_classes, input_shape):
    input_tensor = Input(shape=input_shape)
    # 1st block
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)
    # 2nd block
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)
    # 3rd block
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)
    # 4th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)
    # 5th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)
    # full connection
    x = Flatten()(x)
    x = Dense(4096, activation='relu',  name='fc1')(x)
    x = Dense(4096, activation='relu', name='fc2')(x)
    output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)

    model = Model(input_tensor, output_tensor)
    return model

model=VGG16(len(class_names), (img_width, img_height, 3))
model.summary()

代码实现:

from tensorflow import keras
from tensorflow.keras import layers, models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow        as tf
import numpy             as np

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]  # 如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  # 设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0], "GPU")

gpus
data_dir = "./48-data/"

data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*.jpg')))

print("图片总数为:",image_count)
batch_size = 32
img_height = 224
img_width = 224

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)


"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)


class_names = train_ds.class_names
print(class_names)

plt.figure(figsize=(10, 4))  # 图形的宽为10高为5

for images, labels in train_ds.take(1):
    for i in range(10):
        ax = plt.subplot(2, 5, i + 1)

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])

        plt.axis("off")

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

normalization_layer = layers.experimental.preprocessing.Rescaling(1./255)

train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
val_ds   = val_ds.map(lambda x, y: (normalization_layer(x), y))


image_batch, labels_batch = next(iter(val_ds))
first_image = image_batch[0]

# 查看归一化后的数据
print(np.min(first_image), np.max(first_image))

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout

def VGG16(nb_classes, input_shape):
    input_tensor = Input(shape=input_shape)
    # 1st block
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)
    # 2nd block
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)
    # 3rd block
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)
    # 4th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)
    # 5th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)
    # full connection
    x = Flatten()(x)
    x = Dense(4096, activation='relu',  name='fc1')(x)
    x = Dense(4096, activation='relu', name='fc2')(x)
    output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)

    model = Model(input_tensor, output_tensor)
    return model

model=VGG16(len(class_names), (img_width, img_height, 3))
model.summary()

# 设置初始学习率
initial_learning_rate = 1e-4

lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
        initial_learning_rate,
        decay_steps=30,      # 敲黑板!!!这里是指 steps,不是指epochs
        decay_rate=0.92,     # lr经过一次衰减就会变成 decay_rate*lr
        staircase=True)

# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=initial_learning_rate)

model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])


epochs = 20

history = model.fit(
    train_ds,
    validation_data=val_ds,
    epochs=epochs
)

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

365天深度学习训练营-第6周:好莱坞明星识别_第3张图片

六、总结并改进

1、VGG总结

用VGG-16代码效果不是很理想,与CNN的结果相似,在查阅资料以后改进方法如下

365天深度学习训练营-第6周:好莱坞明星识别_第4张图片

2、报错改正

365天深度学习训练营-第6周:好莱坞明星识别_第5张图片

原vgg是10分类 我们需要检测的是17类 所以需要再最后的全连接层改为17

 内存不够,可以将batch_size 调小 重新进行训练

 

你可能感兴趣的:(深度学习,python,深度学习)