python实现最小二乘法的线性回归_python最小二乘法线性拟合实现代码

python实现最小二乘法线性拟合

本文python代码实现的是最小二乘法线性拟合,并且包含自己造的轮子与别人造的轮子的结果比较。

问题:对直线附近的带有噪声的数据进行线性拟合,最终求出w,b的估计值。

最小二乘法基本思想是使得样本方差最小。

代码中self_func()函数为自定义拟合函数,skl_func()为调用scikit-learn中线性模块的函数。

import numpy as np

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

n = 101

x = np.linspace(0,10,n)

noise = np.random.randn(n)

y = 2.5 * x + 0.8 + 2.0 * noise

def self_func(steps=100, alpha=0.01):

w = 0.5

b = 0

alpha = 0.01

for i in range(steps):

y_hat = w*x + b

dy = 2.0*(y_hat - y)

dw = dy*x

db = dy

w = w - alpha*np.sum(dw)/n

b = b - alpha*np.sum(db)/n

e = np.sum((y_hat-y)**2)/n

#print (i,'W=',w,'\tb=',b,'\te=',e)

print ('self_func:\tW =',w,'\n\tb =',b)

plt.scatter(x,y)

plt.plot(np.arange(0,10,1), w*np.arange(0,10,1) + b, color = 'r', marker = 'o', label = 'self_func(steps='+str(steps)+', alpha='+str(alpha)+')')

def skl_func():

lr = LinearRegression()

lr.fit(x.reshape(-1,1),y)

y_hat = lr.predict(np.arange(0,10,0.75).reshape(-1,1))

print('skl_fun:\tW = %f\n\tb = %f'%(lr.coef_,lr.intercept_))

plt.plot(np.arange(0,10,0.75), y_hat, color = 'g', marker = 'x', label = 'skl_func')

self_func(10000)

skl_func()

plt.legend(loc='upper left')

plt.show()

结果:

self_func:  W = 2.5648753825503197     b = 0.24527830841237772

skl_fun:     W = 2.564875                             b = 0.245278

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持码农之家。

以上就是本次给大家分享的关于java的全部知识点内容总结,大家还可以在下方相关文章里找到相关文章进一步学习,感谢大家的阅读和支持。

你可能感兴趣的:(python实现最小二乘法的线性回归_python最小二乘法线性拟合实现代码)