Pytorch学习笔记——DenseNet模型

1.代码

import time
import torch
from torch import nn,optim
import torch.nn.functional as F
import torchvision

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def conv_block(in_channels,out_channels):
    blk = nn.Sequential(nn.BatchNorm2d(in_channels),
                        nn.ReLU(),
                        nn.Conv2d(in_channels,out_channels,kernel_size=3,padding=1))
    return blk

class DenseBlock(nn.Module):
    def __init__(self,num_convs,in_channels,out_channels):
        super(DenseBlock,self).__init__()
        net = []
        for i in range(num_convs):
            in_c = in_channels + i*out_channels
            net.append(conv_block(in_c,out_channels))
        self.net = nn.ModuleList(net)
        self.out_channels = in_channels + num_convs * out_channels

    def forward(self,X):
        for blk in self.net:
            Y = blk(X)
            X = torch.cat((X,Y),dim=1)
        return X

""" blk = DenseBlock(2,3,10)
X = torch.rand(4,3,8,8)
Y = blk(X) """

def transition_block(in_channels,out_channels):
    blk = nn.Sequential(nn.BatchNorm2d(in_channels),
                        nn.ReLU(),
                        nn.Conv2d(in_channels,out_channels,kernel_size=1),
                        nn.AvgPool2d(kernel_size=2,stride=2))
    return blk

""" blk = transition_block(23,10)
print(blk(Y).shape) """

net = nn.Sequential(nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),
                    nn.BatchNorm2d(64),
                    nn.ReLU(),
                    nn.MaxPool2d(kernel_size=3,stride=2,padding=1))

num_channels,growth_rate = 64,32
num_convs_in_dense_blocks = [4,4,4,4]

for i,num_convs in enumerate(num_convs_in_dense_blocks):
    DB = DenseBlock(num_convs,num_channels,growth_rate)
    net.add_module("DenseBlock_%d" %i,DB)
    num_channels = DB.out_channels
    if i != len(num_convs_in_dense_blocks) - 1:
        net.add_module("transition_block_%d" %i,
                       transition_block(num_channels,num_channels//2))
        num_channels = num_channels // 2

class GlobalAvgPool2d(nn.Module):
    def __init__(self):
        super(GlobalAvgPool2d,self).__init__()
    def forward(self,x):
        return F.avg_pool2d(x,kernel_size=x.size()[2:])

class FlattenLayer(nn.Module):
    def __init__(self):
        super(FlattenLayer,self).__init__()
    def forward(self,x):
        return x.view(x.shape[0],-1)

net.add_module("BN",nn.BatchNorm2d(num_channels))
net.add_module("relu",nn.ReLU())
net.add_module("global_avg_pool",GlobalAvgPool2d())
net.add_module("fc",nn.Sequential(FlattenLayer(),
                                  nn.Linear(num_channels,10)))

X = torch.rand((1,1,96,96))
for name,layer in net.named_children():
    X = layer(X)
    print(name,'output shape:\t',X.shape)

def evaluate_accuracy(data_iter,net,device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')):
    acc_sum,n = 0.0,0
    with torch.no_grad():
        for X,y in data_iter:
            if isinstance(net,torch.nn.Module):
                net.eval()
                acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
                net.train()
            else:
                if('is_training' in net.__code__.co_varnames):
                    acc_sum += (net(X,is_training=False).argmax(dim=1) == y).float().sum().item()
                else:
                    acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
            n += y.shape[0]
    return acc_sum/n

def load_data_fashion_mnist(batch_size,resize=None,root='~/Datasets/FashionMNIST'):
    trans = []
    if resize:
        trans.append(torchvision.transforms.Resize(size=resize))
    trans.append(torchvision.transforms.ToTensor())

    transform = torchvision.transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(root=root,train=True,download=True,transform=transform)
    mnist_test = torchvision.datasets.FashionMNIST(root=root,train=False,download=True,transform=transform)

    train_iter = torch.utils.data.DataLoader(mnist_train,batch_size=batch_size,shuffle=True,num_workers=4)
    test_iter = torch.utils.data.DataLoader(mnist_test,batch_size=batch_size,shuffle=False,num_workers=4)

    return train_iter,test_iter

def train_ch5(net,train_iter,test_iter,batch_size,optimizer,device,num_epochs):
    net = net.to(device)
    print("training on ",device)
    loss = torch.nn.CrossEntropyLoss()
    batch_count = 0
    for epoch in range(num_epochs):
        train_l_sum,train_acc_sum,n,start = 0.0,0.0,0,time.time()
        for X,y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            l = loss(y_hat,y)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
            batch_count += 1
        test_acc = evaluate_accuracy(test_iter,net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec' %(epoch+1,train_l_sum/batch_count,train_acc_sum/n,test_acc,time.time()-start))

batch_size = 256
train_iter,test_iter = load_data_fashion_mnist(batch_size,resize=96)
lr,num_epochs = 0.001,5
optimizer = torch.optim.Adam(net.parameters(),lr=lr)
train_ch5(net,train_iter,test_iter,batch_size,optimizer,device,num_epochs)

2.结果
在这里插入图片描述

你可能感兴趣的:(笔记,pytorch,学习,深度学习)