java解析mnist_拆分MNIST数据张量流

我一直在关注tensorflow教程 . 我导入了MNIST数据集并运行了2层卷积神经网络的代码 . 训练需要将近45分钟 . 我想通过丢弃一些数据来减少训练数据 . 我怎么做?这是代码:

import tensorflow as tf

import numpy as np

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

def weight_variable(shape):

initial = tf.truncated_normal(shape, stddev=0.1)

return tf.Variable(initial)

def bias_variable(shape):

initial = tf.constant(0.1, shape=shape)

return tf.Variable(initial)

def conv2d(x, W):

return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):

return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')

x = tf.placeholder(tf.float32, shape=[None, 784])

y_ = tf.placeholder(tf.float32, [None, 10])

W_conv1 = weight_variable([5, 5, 1, 32])

b_conv1 = bias_variable([32])

x_image = tf.reshape(x, [-1,28,28,1])

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)

h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_variable([5, 5, 32, 64])

b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

h_pool2 = max_pool_2x2(h_conv2)

W_fc1 = weight_variable([7 * 7 * 64, 1024])

b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])

h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

keep_prob = tf.placeholder(tf.float32)

h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

W_fc2 = weight_variable([1024, 10])

b_fc2 = bias_variable([10])

y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv, y_))

train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

sess = tf.Session()

sess.run(tf.initialize_all_variables())

for i in range(20000):

batch = mnist.train.next_batch(50)

if i%100 == 0:

train_accuracy = accuracy.eval(session=sess,feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})

print("step %d, training accuracy %g"%(i, train_accuracy))

train_step.run(session=sess,feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g"%accuracy.eval(session=sess,feed_dict={x: np.split(mnist.test.images,5)[0], y_: np.split(mnist.test.labels,5)[0], keep_prob: 1.0}))

我减少了测试数据的大小,因为它是一个numpy数组 . 如何对培训数据进行相同的操作?

你可能感兴趣的:(java解析mnist)