AI道路千万条,准备数据第一条
最近为了训练yolo4和5,下载了DOTA数据集来用,不过下载的数据需要处理后让它符合yolo的标注格式,折腾了一天终于搞定了数据集的问题,现在分享一下数据集的地址(我只处理了V1.0版的DOTA,V1.5的虽然也下载下来了,但是只把其中的png转换成了jpg,其他的没动):
百度云:https://pan.baidu.com/s/1UX7oX3_x5CrP_SxSA7XKXQ
提取码: iw3w
里面有两个压缩包,其中DOTA_original是从DOTA官网下载的,DOTA_split是根据yolo要求处理过的;
# class names
names: ['small-vehicle', 'large-vehicle', 'plane', 'storage-tank',
'ship', 'harbor', 'ground-track-field', 'soccer-ball-field', 'tennis-court',
'swimming-pool', 'baseball-diamond', 'roundabout', 'basketball-court',
'bridge', 'helicopter']
主要环境:
python 3.7 pytorch 1.7.1, torchvision 0.8.1
环境安装 : pip install -r requirements.txt
百度网盘:https://pan.baidu.com/s/1umW9M-X6cWGmLODa2-pzug
密码:1234
yolo5中dota_data/dota_name.yaml文件中设置的类别:
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
# Download command: bash ./data/get_voc.sh
# Train command: python train.py --data voc.yaml
# Default dataset location is next to /yolov5:
# /parent_folder
# /VOC
# /yolov5
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: dota_data/images/train/ # 图片和label路径
val: dota_data/images/val/
# number of classes
nc: 15
# class names
names: ['small-vehicle', 'large-vehicle', 'plane', 'storage-tank', 'ship',
'harbor', 'ground-track-field','soccer-ball-field', 'tennis-court',
'swimming-pool', 'baseball-diamond', 'roundabout', 'basketball-court',
'bridge', 'helicopter']
其中dota_data/yolov5l_dota.yaml是yolov5l模型,可以根据自己的需求换成其他模型,比如s、m等