MAE代码阅读(一)

参数

 parser = argparse.ArgumentParser('MAE pre-training', add_help=False)
    parser.add_argument('--batch_size', default=64, type=int,
                        help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
    parser.add_argument('--epochs', default=400, type=int)
    parser.add_argument('--accum_iter', default=1, type=int,
                        help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')

    # Model parameters
    parser.add_argument('--model', default='mae_vit_large_patch16', type=str, metavar='MODEL',
                        help='Name of model to train')

    parser.add_argument('--input_size', default=224, type=int,
                        help='images input size')

    parser.add_argument('--mask_ratio', default=0.75, type=float,
                        help='Masking ratio (percentage of removed patches).')

    parser.add_argument('--norm_pix_loss', action='store_true',
                        help='Use (per-patch) normalized pixels as targets for computing loss')
    parser.set_defaults(norm_pix_loss=False)

    # Optimizer parameters
    parser.add_argument('--weight_decay', type=float, default=0.05,
                        help='weight decay (default: 0.05)')

    parser.add_argument('--lr', type=float, default=None, metavar='LR',
                        help='learning rate (absolute lr)')
    parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
                        help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
    parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
                        help='lower lr bound for cyclic schedulers that hit 0')

    parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N',
                        help='epochs to warmup LR')

    # Dataset parameters
    parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str,
                        help='dataset path')

    parser.add_argument('--output_dir', default='./output_dir',
                        help='path where to save, empty for no saving')
    parser.add_argument('--log_dir', default='./output_dir',
                        help='path where to tensorboard log')
    parser.add_argument('--device', default='cuda',
                        help='device to use for training / testing')
    parser.add_argument('--seed', default=0, type=int)
    parser.add_argument('--resume', default='',
                        help='resume from checkpoint')

    parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
                        help='start epoch')
    parser.add_argument('--num_workers', default=10, type=int)
    parser.add_argument('--pin_mem', action='store_true',
                        help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
    parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
    parser.set_defaults(pin_mem=True)

    # distributed training parameters
    parser.add_argument('--world_size', default=1, type=int,
                        help='number of distributed processes')
    parser.add_argument('--local_rank', default=-1, type=int)
    parser.add_argument('--dist_on_itp', action='store_true')
    parser.add_argument('--dist_url', default='env://',
                        help='url used to set up distributed training')

模型(以mae_vit_large_patch16为例)

def mae_vit_large_patch16_dec512d8b(**kwargs):
    model = MaskedAutoencoderViT(
        patch_size=16, embed_dim=1024, depth=24, num_heads=16,
        decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
        mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    return model

main_pretrain

	param_groups = optim_factory.add_weight_decay(model_without_ddp, args.weight_decay)
    optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
    #作者使用AdamW作为优化器。常用的adam 优化器虽然收敛速度快,但是一定程度上存在参数过拟合的问题。AdamW的出现就为了解决这个问题,根据一些实验,作者表示该算法是目前训练神经网络最快的方式(AdamW and Super-convergence is now the fastest way to train neural nets)。
    print(optimizer)
    loss_scaler = NativeScaler()#定义了混合精度训练

    misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)

    print(f"Start training for {args.epochs} epochs")
    start_time = time.time()
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            data_loader_train.sampler.set_epoch(epoch)
        train_stats = train_one_epoch(
            model, data_loader_train,
            optimizer, device, epoch, loss_scaler,
            log_writer=log_writer,
            args=args
        )
        if args.output_dir and (epoch % 20 == 0 or epoch + 1 == args.epochs):
            misc.save_model(
                args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
                loss_scaler=loss_scaler, epoch=epoch)

        log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
                        'epoch': epoch,}

        if args.output_dir and misc.is_main_process():
            if log_writer is not None:
                log_writer.flush()
            with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
                f.write(json.dumps(log_stats) + "\n")

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))

train_one_epoch

这里是逐个epoch训练的代码

def train_one_epoch(model: torch.nn.Module,
                    data_loader: Iterable, optimizer: torch.optim.Optimizer,
                    device: torch.device, epoch: int, loss_scaler,
                    log_writer=None,
                    args=None):
    model.train(True)
    metric_logger = misc.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
    header = 'Epoch: [{}]'.format(epoch)
    print_freq = 20

    accum_iter = args.accum_iter

    optimizer.zero_grad()

    if log_writer is not None:
        print('log_dir: {}'.format(log_writer.log_dir))

    for data_iter_step, (samples, _) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):

        # we use a per iteration (instead of per epoch) lr scheduler
        if data_iter_step % accum_iter == 0:
            lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)

        samples = samples.to(device, non_blocking=True)

        with torch.cuda.amp.autocast():#混合精度训练
            loss, _, _ = model(samples, mask_ratio=args.mask_ratio)

        loss_value = loss.item()

        if not math.isfinite(loss_value):
            print("Loss is {}, stopping training".format(loss_value))
            sys.exit(1)

        loss /= accum_iter
        loss_scaler(loss, optimizer, parameters=model.parameters(),
                    update_grad=(data_iter_step + 1) % accum_iter == 0)
        if (data_iter_step + 1) % accum_iter == 0:
            optimizer.zero_grad()

        torch.cuda.synchronize()
        #等待当前设备上所有流中的所有核心完成。
        #因为在pytorch里面,程序的执行都是异步的。代码会同步cu的操作,等待gpu上的操作都完成了再继续成形。

        metric_logger.update(loss=loss_value)

        lr = optimizer.param_groups[0]["lr"]
        metric_logger.update(lr=lr)

        loss_value_reduce = misc.all_reduce_mean(loss_value)
        if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
            """ We use epoch_1000x as the x-axis in tensorboard.
            This calibrates different curves when batch size changes.
            """
            epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
            log_writer.add_scalar('train_loss', loss_value_reduce, epoch_1000x)
            log_writer.add_scalar('lr', lr, epoch_1000x)


    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)
    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}

half-cycle cosine after warmup

def adjust_learning_rate(optimizer, epoch, args):
    """Decay the learning rate with half-cycle cosine after warmup"""
    if epoch < args.warmup_epochs:
        lr = args.lr * epoch / args.warmup_epochs 
    else:
        lr = args.min_lr + (args.lr - args.min_lr) * 0.5 * \
            (1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs)))
    for param_group in optimizer.param_groups:
        if "lr_scale" in param_group:
            param_group["lr"] = lr * param_group["lr_scale"]
        else:
            param_group["lr"] = lr
    return lr

MaskedAutoencoderViT

class MaskedAutoencoderViT(nn.Module):
    """ Masked Autoencoder with VisionTransformer backbone
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3,
                 embed_dim=1024, depth=24, num_heads=16,
                 decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
                 mlp_ratio=4., norm_layer=nn.LayerNorm, norm_pix_loss=False):
        super().__init__()

        # --------------------------------------------------------------------------
        # MAE encoder specifics
        self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim)
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False)  # fixed sin-cos embedding

        self.blocks = nn.ModuleList([
            Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer)
            for i in range(depth)])
        #self.blocks属于encoder
        self.norm = norm_layer(embed_dim)
        # --------------------------------------------------------------------------

        # --------------------------------------------------------------------------
        # MAE decoder specifics
        self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True)

        self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))

        self.decoder_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, decoder_embed_dim), requires_grad=False)  # fixed sin-cos embedding

        self.decoder_blocks = nn.ModuleList([
            Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer)
            for i in range(decoder_depth)])

        self.decoder_norm = norm_layer(decoder_embed_dim)
        self.decoder_pred = nn.Linear(decoder_embed_dim, patch_size**2 * in_chans, bias=True) # decoder to patch
        # --------------------------------------------------------------------------

        self.norm_pix_loss = norm_pix_loss

        self.initialize_weights()

    def initialize_weights(self):
        # initialization
        # initialize (and freeze) pos_embed by sin-cos embedding
        pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True)
        self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))

        decoder_pos_embed = get_2d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True)
        self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))

        # initialize patch_embed like nn.Linear (instead of nn.Conv2d)
        w = self.patch_embed.proj.weight.data
        torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))

        # timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
        torch.nn.init.normal_(self.cls_token, std=.02)
        torch.nn.init.normal_(self.mask_token, std=.02)

        # initialize nn.Linear and nn.LayerNorm
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            # we use xavier_uniform following official JAX ViT:
            torch.nn.init.xavier_uniform_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def patchify(self, imgs):
        """
        imgs: (N, 3, H, W)
        x: (N, L, patch_size**2 *3)
        """
        p = self.patch_embed.patch_size[0]
        assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0

        h = w = imgs.shape[2] // p
        x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p))
        x = torch.einsum('nchpwq->nhwpqc', x)
        x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 3))
        return x

    def unpatchify(self, x):
        """
        x: (N, L, patch_size**2 *3)
        imgs: (N, 3, H, W)
        """
        p = self.patch_embed.patch_size[0]
        h = w = int(x.shape[1]**.5)
        assert h * w == x.shape[1]
        
        x = x.reshape(shape=(x.shape[0], h, w, p, p, 3))
        x = torch.einsum('nhwpqc->nchpwq', x)
        imgs = x.reshape(shape=(x.shape[0], 3, h * p, h * p))
        return imgs

    def random_masking(self, x, mask_ratio):
        """
        Perform per-sample random masking by per-sample shuffling.
        Per-sample shuffling is done by argsort random noise.
        x: [N, L, D], sequence
        """
        N, L, D = x.shape  # batch, length, dim
        len_keep = int(L * (1 - mask_ratio))
        
        noise = torch.rand(N, L, device=x.device)  # noise in [0, 1]
        
        # sort noise for each sample
        ids_shuffle = torch.argsort(noise, dim=1)  # ascend: small is keep, large is remove
        ids_restore = torch.argsort(ids_shuffle, dim=1)

        # keep the first subset
        ids_keep = ids_shuffle[:, :len_keep]
        x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))

        # generate the binary mask: 0 is keep, 1 is remove
        mask = torch.ones([N, L], device=x.device)
        mask[:, :len_keep] = 0
        # unshuffle to get the binary mask
        mask = torch.gather(mask, dim=1, index=ids_restore)

        return x_masked, mask, ids_restore

    def forward_encoder(self, x, mask_ratio):
        # embed patches
        x = self.patch_embed(x)

        # add pos embed w/o cls token
        x = x + self.pos_embed[:, 1:, :]

        # masking: length -> length * mask_ratio
        x, mask, ids_restore = self.random_masking(x, mask_ratio)

        # append cls token
        cls_token = self.cls_token + self.pos_embed[:, :1, :]
        cls_tokens = cls_token.expand(x.shape[0], -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)

        # apply Transformer blocks
        for blk in self.blocks:
            x = blk(x)
        x = self.norm(x)

        return x, mask, ids_restore

    def forward_decoder(self, x, ids_restore):
        # embed tokens
        x = self.decoder_embed(x)

        # append mask tokens to sequence
        mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1)
        x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1)  # no cls token
        x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2]))  # unshuffle
        x = torch.cat([x[:, :1, :], x_], dim=1)  # append cls token

        # add pos embed
        x = x + self.decoder_pos_embed

        # apply Transformer blocks
        for blk in self.decoder_blocks:
            x = blk(x)
        x = self.decoder_norm(x)

        # predictor projection
        x = self.decoder_pred(x)

        # remove cls token
        x = x[:, 1:, :]

        return x

    def forward_loss(self, imgs, pred, mask):
        """
        imgs: [N, 3, H, W]
        pred: [N, L, p*p*3]
        mask: [N, L], 0 is keep, 1 is remove, 
        """
        target = self.patchify(imgs)
        if self.norm_pix_loss:
            mean = target.mean(dim=-1, keepdim=True)
            var = target.var(dim=-1, keepdim=True)
            target = (target - mean) / (var + 1.e-6)**.5

        loss = (pred - target) ** 2
        loss = loss.mean(dim=-1)  # [N, L], mean loss per patch

        loss = (loss * mask).sum() / mask.sum()  # mean loss on removed patches
        return loss

    def forward(self, imgs, mask_ratio=0.75):
        latent, mask, ids_restore = self.forward_encoder(imgs, mask_ratio)
        pred = self.forward_decoder(latent, ids_restore)  # [N, L, p*p*3]
        loss = self.forward_loss(imgs, pred, mask)
        return loss, pred, mask

PatchEmbed

PatchEmbed将传进来的B3224224切成B7681414

class PatchEmbed(nn.Module):
    """ 2D Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.num_patches = self.grid_size[0] * self.grid_size[1]
        self.flatten = flatten

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        B, C, H, W = x.shape
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x)#B*3*224*224->B*768*14*14
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # BCHW -> BNC B*768*14*14->B*768*196->B*196*768
        x = self.norm(x)
        return x

Block

class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        #B*N*C - >B*N*(3*C) - > B*N*3*num_heads*(C//num_heads) - > 3 * B * num_heads * N * (C//num_heads)
        q, k, v = qkv[0], qkv[1], qkv[2]   # make torchscript happy (cannot use tensor as tuple)
        #B * num_heads * N * (C//num_heads) || B * num_heads * (C//num_heads) * N 表示常规的数学上定义的矩阵相乘
        attn = (q @ k.transpose(-2, -1)) * self.scale #B * num_heads * N * N
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        # B * num_heads * N * N || B * num_heads * N * (C//num_heads) - > B*num_heads*N*(C//num_heads) - > B*N*num_heads*(C//num_heads)->B*N*C
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x

你可能感兴趣的:(transformer,深度学习,pytorch,计算机视觉)