TensorFlow搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测

目录

  • I. 前言
  • II. 多模型单步预测
  • III. 代码实现
    • 3.1 数据处理
    • 3.2 模型搭建
    • 3.3 模型训练/测试
    • 3.4 实验结果
  • IV. 源码及数据

I. 前言

系列文章:

  1. 深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)
  2. PyTorch搭建LSTM实现时间序列预测(负荷预测)
  3. PyTorch搭建LSTM实现多变量时间序列预测(负荷预测)
  4. PyTorch搭建双向LSTM实现时间序列预测(负荷预测)
  5. PyTorch搭建LSTM实现多变量多步长时间序列预测(一):直接多输出
  6. PyTorch搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测
  7. PyTorch搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测
  8. PyTorch搭建LSTM实现多变量多步长时间序列预测(四):多模型滚动预测
  9. PyTorch搭建LSTM实现多变量多步长时间序列预测(五):seq2seq
  10. PyTorch中实现LSTM多步长时间序列预测的几种方法总结(负荷预测)
  11. PyTorch-LSTM时间序列预测中如何预测真正的未来值
  12. PyTorch搭建LSTM实现多变量输入多变量输出时间序列预测(多任务学习)
  13. PyTorch搭建ANN实现时间序列预测(风速预测)
  14. PyTorch搭建CNN实现时间序列预测(风速预测)
  15. PyTorch搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)
  16. PyTorch搭建Transformer实现多变量多步长时间序列预测(负荷预测)
  17. PyTorch时间序列预测系列文章总结(代码使用方法)
  18. TensorFlow搭建LSTM实现时间序列预测(负荷预测)
  19. TensorFlow搭建LSTM实现多变量时间序列预测(负荷预测)
  20. TensorFlow搭建双向LSTM实现时间序列预测(负荷预测)
  21. TensorFlow搭建LSTM实现多变量多步长时间序列预测(一):直接多输出
  22. TensorFlow搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测
  23. TensorFlow搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测
  24. TensorFlow搭建LSTM实现多变量多步长时间序列预测(四):多模型滚动预测
  25. TensorFlow搭建LSTM实现多变量多步长时间序列预测(五):seq2seq
  26. TensorFlow搭建LSTM实现多变量输入多变量输出时间序列预测(多任务学习)
  27. TensorFlow搭建ANN实现时间序列预测(风速预测)
  28. TensorFlow搭建CNN实现时间序列预测(风速预测)
  29. TensorFlow搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)

II. 多模型单步预测

所谓多模型单步预测:比如前10个预测后3个,那么我们可以训练三个模型分别根据[1…10]预测[11]、[12]以及[13]。也就是说如果需要进行n步预测,那么我们一共需要训练n个LSTM模型,缺点很突出。

III. 代码实现

3.1 数据处理

我们根据前24个时刻的负荷以及该时刻的环境变量来预测接下来12个时刻的负荷(步长pred_step_size可调)。

简单来说,如果需要利用前24个值预测接下来12个值,那么我们需要生成12个数据集。

3.2 模型搭建

模型和之前的文章一致:

class LSTM(keras.Model):
    def __init__(self, args):
        super(LSTM, self).__init__()
        self.lstm = Sequential()
        for i in range(args.num_layers):
            self.lstm.add(layers.LSTM(units=args.hidden_size, input_shape=(args.seq_len, args.input_size),
                                      activation='tanh', return_sequences=True))
        self.fc1 = layers.Dense(64, activation='relu')
        self.fc2 = layers.Dense(args.output_size)

    def call(self, data, training=None, mask=None):
        x = self.lstm(data)
        x = self.fc1(x)
        x = self.fc2(x)

        return x[:, -1:, :]

3.3 模型训练/测试

与前文不同的是,这种方法需要训练多个模型:

if __name__ == '__main__':
    flag = 'mmss'
    Dtrs, Vals, Dtes, m, n = load_data(args, flag, batch_size=args.batch_size)
    for Dtr, Val, path in zip(Dtrs, Vals, LSTM_PATHS):
        train(args, Dtr, Val, path)
    Dtrs, Vals, Dtes, m, n = load_data(args, flag, batch_size=1)
    m_test(args, Dtes, LSTM_PATHS, [m, n])

模型测试:多步预测的每一步,都需要用不同的模型来进行预测。值得注意的是,在正式预测时,数据的batch_size需要设置为1。

3.4 实验结果

前24个预测未来12个,每个模型训练30个epoch,MAPE为8.73%,比上一篇文章中的单步滚动预测效果更好:
TensorFlow搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测_第1张图片

IV. 源码及数据

后面将陆续公开~

你可能感兴趣的:(TensorFlow,时间序列预测,tensorflow,lstm,时间序列预测,多步预测)