C++ 上用 ONNXruntime 部署自己的模型

利用C++ ONNXruntime部署自己的模型,这里用Keras搭建好的一个网络模型来举例,转换为onnx的文件,在C++上进行部署,另外可以利用tensorRT加速。

Github地址:https://github.com/zouyuelin/SLAM_Learning_notes/tree/main/PoseEstimation

网盘地址
链接:https://pan.baidu.com/s/19ncKS8HhwDaYxe2WGlUmNQ?pwd=car0
提取码:car0

目录

  • 一、模型的准备
  • 二、配置ONNXruntime
  • 三、模型的部署
    • 1. 模型的初始化设置
    • 2. 构建推理
      • 构建推理函数computPoseDNN()步骤:
      • 函数具体代码:
  • 四、示例应用
  • 五、运行结果
    • 1.利用pnp的方式运行的结果
    • 2.利用深度学习位姿估计的结果
  • 总结
  • 参考

一、模型的准备

搭建网络模型训练:
tensorflow keras 搭建相机位姿估计网络–例
网络的输入输出为:
网络的输入: [image_ref , image_cur]
网络的输出: [tx , ty , tz , roll , pitch , yaw]

训练的模型位置:kerasTempModel\,一定要用model.save()的方式,不能用model.save_model()
在onnxruntime调用需要onnx模型,这里需要将keras的模型转换为onnx模型;

安装转换的工具:

pip install tf2onnx

安装完后运行:

python -m tf2onnx.convert --saved-model kerasTempModel --output "model.onnx" --opset 14

tip:这里设置 opset 版本为14 的优化效率目前亲测是最好的,推理速度比版本 11 、12更快。

运行完以后在终端最后会告诉你网络模型的输入和输出:

2022-01-21 15:48:00,766 - INFO - 
2022-01-21 15:48:00,766 - INFO - Successfully converted TensorFlow model kerasTempModel to ONNX
2022-01-21 15:48:00,766 - INFO - Model inputs: ['input1', 'input2']
2022-01-21 15:48:00,766 - INFO - Model outputs: ['Output']
2022-01-21 15:48:00,766 - INFO - ONNX model is saved at model.onnx

模型有两个输入,输入节点名分别为['input1', 'input2'],输出节点名为['Output']
当然也可以不用具体知道节点名,在onnxruntime中可以通过打印来查看模型的输入输出节点名。

二、配置ONNXruntime

CMakeLists.txt:
首先需要设置你的ONNXRUNTIME 的安装位置:

#******onnxruntime*****
set(ONNXRUNTIME_ROOT_PATH /path to your onnxruntime-master)
set(ONNXRUNTIME_INCLUDE_DIRS ${ONNXRUNTIME_ROOT_PATH}/include/onnxruntime
                             ${ONNXRUNTIME_ROOT_PATH}/onnxruntime
                             ${ONNXRUNTIME_ROOT_PATH}/include/onnxruntime/core/session/)
set(ONNXRUNTIME_LIB ${ONNXRUNTIME_ROOT_PATH}/build/Linux/Release/libonnxruntime.so)

C++ main.cpp中
头文件:

#include 
#include 
#include 
#include 

三、模型的部署

1. 模型的初始化设置

	//模型位置
    string model_path = "../model.onnx";
	//初始化设置ONNXRUNTIME 的环境
    Ort::Env env(OrtLoggingLevel::ORT_LOGGING_LEVEL_WARNING, "PoseEstimate");
    Ort::SessionOptions session_options;
    //TensorRT加速开启,CUDA加速开启
    OrtSessionOptionsAppendExecutionProvider_Tensorrt(session_options, 0); //tensorRT
    OrtSessionOptionsAppendExecutionProvider_CUDA(session_options, 0);
    session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
    Ort::AllocatorWithDefaultOptions allocator;
    //加载ONNX模型
    Ort::Session session(env, model_path.c_str(), session_options);
    Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault);

打印模型信息:printModelInfo函数

void printModelInfo(Ort::Session &session, Ort::AllocatorWithDefaultOptions &allocator)
{
    //输出模型输入节点的数量
    size_t num_input_nodes = session.GetInputCount();
    size_t num_output_nodes = session.GetOutputCount();
    cout<<"Number of input node is:"<<num_input_nodes<<endl;
    cout<<"Number of output node is:"<<num_output_nodes<<endl;

    //获取输入输出维度
    for(auto i = 0; i<num_input_nodes;i++)
    {
        std::vector<int64_t> input_dims = session.GetInputTypeInfo(i).GetTensorTypeAndShapeInfo().GetShape();
        cout<<endl<<"input "<<i<<" dim is: ";
        for(auto j=0; j<input_dims.size();j++)
            cout<<input_dims[j]<<" ";
    }
    for(auto i = 0; i<num_output_nodes;i++)
    {
        std::vector<int64_t> output_dims = session.GetOutputTypeInfo(i).GetTensorTypeAndShapeInfo().GetShape();
        cout<<endl<<"output "<<i<<" dim is: ";
        for(auto j=0; j<output_dims.size();j++)
            cout<<output_dims[j]<<" ";
    }
    //输入输出的节点名
    cout<<endl;//换行输出
    for(auto i = 0; i<num_input_nodes;i++)
        cout<<"The input op-name "<<i<<" is:"<<session.GetInputName(i, allocator)<<endl;
    for(auto i = 0; i<num_output_nodes;i++)
        cout<<"The output op-name "<<i<<" is:"<<session.GetOutputName(i, allocator)<<endl;

    //input_dims_2[0] = input_dims_1[0] = output_dims[0] = 1;//batch size = 1
}

函数应用:

//打印模型的信息
printModelInfo(session,allocator);

输出结果:

Number of input node is:2
Number of output node is:1

input 0 dim is: -1 512 512 3 
input 1 dim is: -1 512 512 3 
output 0 dim is: -1 6 
The input op-name 0 is:input1
The input op-name 1 is:input2
The output op-name 0 is:Output

如果事先不知道网络,通过打印信息这时候就可以定义全局变量:

//输入网络的维度
static constexpr const int width = 512;
static constexpr const int height = 512;
static constexpr const int channel = 3;
std::array<int64_t, 4> input_shape_{ 1,height, width,channel};

2. 构建推理

构建推理函数computPoseDNN()步骤:

  1. 对应用Opencv输入的Mat图像进行resize:
    Mat Input_1,Input_2;
    resize(img_1,Input_1,Size(512,512));
    resize(img_2,Input_2,Size(512,512));
  1. 指定input和output的节点名,当然也可以定义在全局变量中,这里为了方便置入函数中
    std::vector<const char*> input_node_names = {"input1","input2"};
    std::vector<const char*> output_node_names = {"Output"};
  1. 分配image_ref和image_cur的内存,用指针数组存储,这里长度为 512 * 512 * 3,因为不能直接把Mat矩阵输入,所以需要数组来存储图像数据,然后再转ONNXRUNTIME专有的tensor类型即可:
    std::array<float, width * height *channel> input_image_1{};
    std::array<float, width * height *channel> input_image_2{};
    float* input_1 =  input_image_1.data();
    float* input_2 =  input_image_2.data();

这里float类型根据自己网络需要来,也有可能是double, 可以利用下面的代码输出网络类型:

cout<

上面的c++代码会输出索引,对应下面的数据类型:

typedef enum ONNXTensorElementDataType {
  ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED,
  ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT,   // maps to c type float
  ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8,   // maps to c type uint8_t
  ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8,    // maps to c type int8_t
  ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT16,  // maps to c type uint16_t
  ONNX_TENSOR_ELEMENT_DATA_TYPE_INT16,   // maps to c type int16_t
  ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32,   // maps to c type int32_t
  ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64,   // maps to c type int64_t
  ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING,  // maps to c++ type std::string
  ONNX_TENSOR_ELEMENT_DATA_TYPE_BOOL,
  ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16,
  ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE,      // maps to c type double
  ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT32,      // maps to c type uint32_t
  ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT64,      // maps to c type uint64_t
  ONNX_TENSOR_ELEMENT_DATA_TYPE_COMPLEX64,   // complex with float32 real and imaginary components
  ONNX_TENSOR_ELEMENT_DATA_TYPE_COMPLEX128,  // complex with float64 real and imaginary components
  ONNX_TENSOR_ELEMENT_DATA_TYPE_BFLOAT16     // Non-IEEE floating-point format based on IEEE754 single-precision
} ONNXTensorElementDataType;

例如,如果cout 输出 1,那么网络输出类型就是 float;

  1. 利用循环对float的数组进行赋值:这里可以是 CHW 或者 HWC 的格式:
    你在训练中很可能对数据进行了归一化处理,比如除以了255.0,这里数据还原就需要除以255.0
    for (int i = 0; i < Input_1.rows; i++) {
        for (int j = 0; j < Input_1.cols; j++) {
            for (int c = 0; c < 3; c++)
            {
                //NHWC 格式
                if(c==0)
                    input_1[i*Input_1.cols*3+j*3+c] = Input_1.ptr<uchar>(i)[j*3+2]/255.0;
                if(c==1)
                    input_1[i*Input_1.cols*3+j*3+c] = Input_1.ptr<uchar>(i)[j*3+1]/255.0;
                if(c==2)
                    input_1[i*Input_1.cols*3+j*3+c] = Input_1.ptr<uchar>(i)[j*3+0]/255.0;
                //NCHW 格式
//                if (c == 0)
//                     input_1[c*imgSource.rows*imgSource.cols + i * imgSource.cols + j] = imgSource.ptr(i)[j * 3 + 2]/255.0;
//                if (c == 1)
//                     input_1[c*imgSource.rows*imgSource.cols + i * imgSource.cols + j] = imgSource.ptr(i)[j * 3 + 1]/255.0;
//                if (c == 2)
//                     input_1[c*imgSource.rows*imgSource.cols + i * imgSource.cols + j] = imgSource.ptr(i)[j * 3 + 0]/255.0;


            }
        }
    }
    for (int i = 0; i < Input_2.rows; i++) {
        for (int j = 0; j < Input_2.cols; j++) {
            for (int c = 0; c < 3; c++)
            {
                //NHWC 格式
                if(c==0)
                    input_2[i*Input_2.cols*3+j*3+c] = Input_2.ptr<uchar>(i)[j*3+2]/255.0;
                if(c==1)
                    input_2[i*Input_2.cols*3+j*3+c] = Input_2.ptr<uchar>(i)[j*3+1]/255.0;
                if(c==2)
                    input_2[i*Input_2.cols*3+j*3+c] = Input_2.ptr<uchar>(i)[j*3+0]/255.0;
            }
        }
    }
  1. 这里由于不同网络可能有多个输入节点和多个输出节点,这里需要用std::vector来定义Ort 的tensor;利用两个输入数据创建两个tensor:
    其中 input_shape_就是输入的维度:
std::array<int64_t, 4> input_shape_{ 1,512, 512,3};
    std::vector<Ort::Value> input_tensors;
    input_tensors.push_back(Ort::Value::CreateTensor<float>(
            memory_info, input_1, input_image_1.size(), input_shape_.data(), input_shape_.size()));
    input_tensors.push_back(Ort::Value::CreateTensor<float>(
            memory_info, input_2, input_image_2.size(), input_shape_.data(), input_shape_.size()));
  1. 前向推理:
    同样定义输出的tensor也为 vector,保证通用性
    std::vector<Ort::Value> output_tensors;

    output_tensors = session.Run(Ort::RunOptions { nullptr },
                                    input_node_names.data(), //输入节点名
                                    input_tensors.data(),     //input tensors
                                    input_tensors.size(),     //2
                                    output_node_names.data(), //输出节点名
                                    output_node_names.size()); //1

  1. 输出结果获取:
    由于本例输出只有一个维度,所以只需要 output_tensors[0]即可取出结果:
float* output = output_tensors[0].GetTensorMutableData<float>();

之后再进行位姿重构:

    Eigen::Vector3d t(output[0],output[1],output[2]);
    Eigen::Vector3d r(output[3],output[4],output[5]);

    // 初始化旋转向量
    Eigen::AngleAxisd R_z(r[2], Eigen::Vector3d(0,0,1));
    Eigen::AngleAxisd R_y(r[1], Eigen::Vector3d(0,1,0));
    Eigen::AngleAxisd R_x(r[0], Eigen::Vector3d(1,0,0));
    // 转换为旋转矩阵,x y z的顺式
    Eigen::Matrix3d R_matrix_xyz  = R_z.toRotationMatrix()*R_y.toRotationMatrix()*R_x.toRotationMatrix();
    return Sophus::SE3(R_matrix_xyz,t);

函数具体代码:

Sophus::SE3 computePoseDNN(Mat img_1, Mat img_2, Ort::Session &session,Ort::MemoryInfo &memory_info)
{
    Mat Input_1,Input_2;
    resize(img_1,Input_1,Size(512,512));
    resize(img_2,Input_2,Size(512,512));
    
    std::vector<const char*> input_node_names = {"input1","input2"};
    std::vector<const char*> output_node_names = {"Output"};

    //将图像存储到数组中,BGR--->RGB
    std::array<float, width * height *channel> input_image_1{};
    std::array<float, width * height *channel> input_image_2{};

    float* input_1 =  input_image_1.data();
    float* input_2 =  input_image_2.data();

    for (int i = 0; i < Input_1.rows; i++) {
        for (int j = 0; j < Input_1.cols; j++) {
            for (int c = 0; c < 3; c++)
            {
                //NHWC 格式
                if(c==0)
                    input_1[i*Input_1.cols*3+j*3+c] = Input_1.ptr<uchar>(i)[j*3+2]/255.0;
                if(c==1)
                    input_1[i*Input_1.cols*3+j*3+c] = Input_1.ptr<uchar>(i)[j*3+1]/255.0;
                if(c==2)
                    input_1[i*Input_1.cols*3+j*3+c] = Input_1.ptr<uchar>(i)[j*3+0]/255.0;
                //NCHW 格式
//                if (c == 0)
//                     input_1[c*imgSource.rows*imgSource.cols + i * imgSource.cols + j] = imgSource.ptr(i)[j * 3 + 2]/255.0;
//                if (c == 1)
//                     input_1[c*imgSource.rows*imgSource.cols + i * imgSource.cols + j] = imgSource.ptr(i)[j * 3 + 1]/255.0;
//                if (c == 2)
//                     input_1[c*imgSource.rows*imgSource.cols + i * imgSource.cols + j] = imgSource.ptr(i)[j * 3 + 0]/255.0;


            }
        }
    }
    for (int i = 0; i < Input_2.rows; i++) {
        for (int j = 0; j < Input_2.cols; j++) {
            for (int c = 0; c < 3; c++)
            {
                //NHWC 格式
                if(c==0)
                    input_2[i*Input_2.cols*3+j*3+c] = Input_2.ptr<uchar>(i)[j*3+2]/255.0;
                if(c==1)
                    input_2[i*Input_2.cols*3+j*3+c] = Input_2.ptr<uchar>(i)[j*3+1]/255.0;
                if(c==2)
                    input_2[i*Input_2.cols*3+j*3+c] = Input_2.ptr<uchar>(i)[j*3+0]/255.0;
            }
        }
    }

    std::vector<Ort::Value> input_tensors;
    input_tensors.push_back(Ort::Value::CreateTensor<float>(
            memory_info, input_1, input_image_1.size(), input_shape_.data(), input_shape_.size()));
    input_tensors.push_back(Ort::Value::CreateTensor<float>(
            memory_info, input_2, input_image_2.size(), input_shape_.data(), input_shape_.size()));

    std::vector<Ort::Value> output_tensors;

    output_tensors = session.Run(Ort::RunOptions { nullptr },
                                    input_node_names.data(), //输入节点名
                                    input_tensors.data(),     //input tensors
                                    input_tensors.size(),     //2
                                    output_node_names.data(), //输出节点名
                                    output_node_names.size()); //1

//    cout<
    float* output = output_tensors[0].GetTensorMutableData<float>();
    Eigen::Vector3d t(output[0],output[1],output[2]);
    Eigen::Vector3d r(output[3],output[4],output[5]);

    // 初始化旋转向量
    Eigen::AngleAxisd R_z(r[2], Eigen::Vector3d(0,0,1));
    Eigen::AngleAxisd R_y(r[1], Eigen::Vector3d(0,1,0));
    Eigen::AngleAxisd R_x(r[0], Eigen::Vector3d(1,0,0));
    // 转换为旋转矩阵
    Eigen::Matrix3d R_matrix_xyz  = R_z.toRotationMatrix()*R_y.toRotationMatrix()*R_x.toRotationMatrix();

    return Sophus::SE3(R_matrix_xyz,t);

四、示例应用

#include 
#include 
#include 
#include 

#include 
#include 

#include 

Sophus::SE3 computePoseDNN(Mat img_1, Mat img_2, Ort::Session &session, Ort::MemoryInfo &memory_info);

//输入网络的维度
static constexpr const int width = 512;
static constexpr const int height = 512;
static constexpr const int channel = 3;
std::array<int64_t, 4> input_shape_{ 1,height, width,channel};

using namespace cv;
using namespace std;
int main()
{
	//模型位置
    string model_path = "../model.onnx";

    Ort::Env env(OrtLoggingLevel::ORT_LOGGING_LEVEL_WARNING, "PoseEstimate");
    Ort::SessionOptions session_options;
    //CUDA加速开启
    OrtSessionOptionsAppendExecutionProvider_Tensorrt(session_options, 0); //tensorRT
    OrtSessionOptionsAppendExecutionProvider_CUDA(session_options, 0);
    session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
    Ort::AllocatorWithDefaultOptions allocator;
    //加载ONNX模型
    Ort::Session session(env, model_path.c_str(), session_options);
    Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault);
    //打印模型的信息
    printModelInfo(session,allocator);

	Mat img_1 = imread("/path_to_your_img1",IMREAD_COLOR);
    Mat img_2 = imread("/path_to_your_img2",IMREAD_COLOR);
    Sophus::SE3 pose = computePoseDNN(img_1,img_2,session,memory_info);
    
}
Sophus::SE3 computePoseDNN(Mat img_1, Mat img_2, Ort::Session &session,Ort::MemoryInfo &memory_info)
{
    Mat Input_1,Input_2;
    resize(img_1,Input_1,Size(512,512));
    resize(img_2,Input_2,Size(512,512));
    std::vector<const char*> input_node_names = {"input1","input2"};
    std::vector<const char*> output_node_names = {"Output"};

    //将图像存储到uchar数组中,BGR--->RGB
    std::array<float, width * height *channel> input_image_1{};
    std::array<float, width * height *channel> input_image_2{};

    float* input_1 =  input_image_1.data();
    float* input_2 =  input_image_2.data();

    for (int i = 0; i < Input_1.rows; i++) {
        for (int j = 0; j < Input_1.cols; j++) {
            for (int c = 0; c < 3; c++)
            {
                //NHWC 格式
                if(c==0)
                    input_1[i*Input_1.cols*3+j*3+c] = Input_1.ptr<uchar>(i)[j*3+2]/255.0;
                if(c==1)
                    input_1[i*Input_1.cols*3+j*3+c] = Input_1.ptr<uchar>(i)[j*3+1]/255.0;
                if(c==2)
                    input_1[i*Input_1.cols*3+j*3+c] = Input_1.ptr<uchar>(i)[j*3+0]/255.0;
                //NCHW 格式
//                if (c == 0)
//                     input_1[c*imgSource.rows*imgSource.cols + i * imgSource.cols + j] = imgSource.ptr(i)[j * 3 + 2]/255.0;
//                if (c == 1)
//                     input_1[c*imgSource.rows*imgSource.cols + i * imgSource.cols + j] = imgSource.ptr(i)[j * 3 + 1]/255.0;
//                if (c == 2)
//                     input_1[c*imgSource.rows*imgSource.cols + i * imgSource.cols + j] = imgSource.ptr(i)[j * 3 + 0]/255.0;


            }
        }
    }
    for (int i = 0; i < Input_2.rows; i++) {
        for (int j = 0; j < Input_2.cols; j++) {
            for (int c = 0; c < 3; c++)
            {
                //NHWC 格式
                if(c==0)
                    input_2[i*Input_2.cols*3+j*3+c] = Input_2.ptr<uchar>(i)[j*3+2]/255.0;
                if(c==1)
                    input_2[i*Input_2.cols*3+j*3+c] = Input_2.ptr<uchar>(i)[j*3+1]/255.0;
                if(c==2)
                    input_2[i*Input_2.cols*3+j*3+c] = Input_2.ptr<uchar>(i)[j*3+0]/255.0;
            }
        }
    }

    std::vector<Ort::Value> input_tensors;
    input_tensors.push_back(Ort::Value::CreateTensor<float>(
            memory_info, input_1, input_image_1.size(), input_shape_.data(), input_shape_.size()));
    input_tensors.push_back(Ort::Value::CreateTensor<float>(
            memory_info, input_2, input_image_2.size(), input_shape_.data(), input_shape_.size()));
            
    std::vector<Ort::Value> output_tensors;
    output_tensors = session.Run(Ort::RunOptions { nullptr },
                                    input_node_names.data(), //输入节点名
                                    input_tensors.data(),     //input tensors
                                    input_tensors.size(),     //2
                                    output_node_names.data(), //输出节点名
                                    output_node_names.size()); //1

//    cout<
    float* output = output_tensors[0].GetTensorMutableData<float>();
    Eigen::Vector3d t(output[0],output[1],output[2]);
    Eigen::Vector3d r(output[3],output[4],output[5]);

    // 初始化旋转向量,绕z轴旋转,y轴,x轴;
    Eigen::AngleAxisd R_z(r[2], Eigen::Vector3d(0,0,1));
    Eigen::AngleAxisd R_y(r[1], Eigen::Vector3d(0,1,0));
    Eigen::AngleAxisd R_x(r[0], Eigen::Vector3d(1,0,0));
    // 转换为旋转矩阵
    Eigen::Matrix3d R_matrix_xyz  = R_z.toRotationMatrix()*R_y.toRotationMatrix()*R_x.toRotationMatrix();

    return Sophus::SE3(R_matrix_xyz,t);
}

void printModelInfo(Ort::Session &session, Ort::AllocatorWithDefaultOptions &allocator)
{
    //输出模型输入节点的数量
    size_t num_input_nodes = session.GetInputCount();
    size_t num_output_nodes = session.GetOutputCount();
    cout<<"Number of input node is:"<<num_input_nodes<<endl;
    cout<<"Number of output node is:"<<num_output_nodes<<endl;

    //获取输入输出维度
    for(auto i = 0; i<num_input_nodes;i++)
    {
        std::vector<int64_t> input_dims = session.GetInputTypeInfo(i).GetTensorTypeAndShapeInfo().GetShape();
        cout<<endl<<"input "<<i<<" dim is: ";
        for(auto j=0; j<input_dims.size();j++)
            cout<<input_dims[j]<<" ";
    }
    for(auto i = 0; i<num_output_nodes;i++)
    {
        std::vector<int64_t> output_dims = session.GetOutputTypeInfo(i).GetTensorTypeAndShapeInfo().GetShape();
        cout<<endl<<"output "<<i<<" dim is: ";
        for(auto j=0; j<output_dims.size();j++)
            cout<<output_dims[j]<<" ";
    }
    //输入输出的节点名
    cout<<endl;//换行输出
    for(auto i = 0; i<num_input_nodes;i++)
        cout<<"The input op-name "<<i<<" is:"<<session.GetInputName(i, allocator)<<endl;
    for(auto i = 0; i<num_output_nodes;i++)
        cout<<"The output op-name "<<i<<" is:"<<session.GetOutputName(i, allocator)<<endl;
}

五、运行结果

1.利用pnp的方式运行的结果

处理速度:43ms
C++ 上用 ONNXruntime 部署自己的模型_第1张图片

2.利用深度学习位姿估计的结果

处理速度:11msC++ 上用 ONNXruntime 部署自己的模型_第2张图片

总结

很明显,快了!!

参考

在C++上利用onnxruntime (CUDA)和 opencv 部署模型onnx

你可能感兴趣的:(深度学习,深度学习,tensorflow,onnxruntime,模型部署)