机器学习——回归

定义:回归研究的是自变量(输入)与因变量(输出)之间的关系。

应用示例:

  • 股市预测(Stock market forecast)
    • 输入:过去10年股票的变动、新闻咨询、公司并购咨询等
    • 输出:预测股市明天的平均值
  • 自动驾驶(Self-driving Car)
    • 输入:无人车上的各个sensor的数据,例如路况、测出的车距等
    • 输出:方向盘的角度
  • 商品推荐(Recommendation)
    • 输入:商品A的特性,商品B的特性
    • 输出:购买商品B的可能性
  • Pokemon精灵攻击力预测(Combat Power of a pokemon):
    • 输入:进化前的CP值、物种(Bulbasaur)、血量(HP)、重量(Weight)、高度(Height)
    • 输出:进化后的CP值

 步骤:

(1)选择模型

(2)优化模型

(3)评估模型

你可能感兴趣的:(人工智能,回归)