1、按照支持向量机的思想,下图哪条决策边界的泛化性最好?
A、绿线
B、黑线
C、黄线
B
2、假设支持向量分别为
3x1+4x2+5=+1
3x1+4x2+5=−1
如下图:
则最大间隔r的值为?
A、0.3
B、0.4
C、0.5
D、2
B
3、假设有两个样本点:(V,+1),(-V,-1)。其中,V=(3,2),则使得间隔最大的决策边界为:
(ps:x为横坐标轴,y为纵坐标轴)
A、x=0
B、y=0
C、3x+2y=0
D、2x+3y=0
C
4、有三个样本点:(x,+1),(y,+1),(z,-1),超平面为:a+b=1。
其中,x=(3,0),y=(0,4),z=(0,0),则以下说法错误的为:
A、超平面能够将三个样本点按类别分隔开来
B、样本y到超平面的距离为3
C、样本z到超平面的距离的平方为0.5
D、离超平面距离最近的样本为z
B
5、
图中,最大间隔决策边界为:
A、x+y+1=0
B、x-y+1=0
C、-x-y+1=0
D、-x+y+1=0
D
6、下面说法正确的是?
A、支持向量机的最终模型仅仅与支持向量有关。
B、支持向量机的最终模型由所有的训练样本共同决定。
C、支持向量机的最终模型由离决策边界最近的几个点决定。
D、训练集越大,支持向量机的模型就一定越准确。
A C
#encoding=utf8
from sklearn.svm import LinearSVC
def linearsvc_predict(train_data,train_label,test_data):
'''
input:train_data(ndarray):训练数据
train_label(ndarray):训练标签
output:predict(ndarray):测试集预测标签
'''
#********* Begin *********#
clf = LinearSVC(dual=False)
clf.fit(train_data,train_label)
predict = clf.predict(test_data)
#********* End *********#
return predict
#encoding=utf8
from sklearn.svm import SVC
def svc_predict(train_data,train_label,test_data,kernel):
'''
input:train_data(ndarray):训练数据
train_label(ndarray):训练标签
kernel(str):使用核函数类型:
'linear':线性核函数
'poly':多项式核函数
'rbf':径像核函数/高斯核
output:predict(ndarray):测试集预测标签
'''
#********* Begin *********#
clf =SVC(kernel=kernel)
clf.fit(train_data,train_label)
predict = clf.predict(test_data)
#********* End *********#
return predict
#encoding=utf8
import numpy as np
class smo:
def __init__(self, max_iter=100, kernel='linear'):
'''
input:max_iter(int):最大训练轮数
kernel(str):核函数,等于'linear'表示线性,等于'poly'表示多项式
'''
self.max_iter = max_iter
self._kernel = kernel
#初始化模型
def init_args(self, features, labels):
self.m, self.n = features.shape
self.X = features
self.Y = labels
self.b = 0.0
# 将Ei保存在一个列表里
self.alpha = np.ones(self.m)
self.E = [self._E(i) for i in range(self.m)]
# 错误惩罚参数
self.C = 1.0
#********* Begin *********#
#kkt条件
def _KKT(self, i):
y_g = self._g(i)*self.Y[i]
if self.alpha[i] == 0:
return y_g >= 1
elif 0 < self.alpha[i] < self.C:
return y_g == 1
else:
return y_g <= 1
# g(x)预测值,输入xi(X[i])
def _g(self, i):
r = self.b
for j in range(self.m):
r += self.alpha[j]*self.Y[j]*self.kernel(self.X[i], self.X[j])
return r
# 核函数,多项式添加二次项即可
def kernel(self, x1, x2):
if self._kernel == 'linear':
return sum([x1[k]*x2[k] for k in range(self.n)])
elif self._kernel == 'poly':
return (sum([x1[k]*x2[k] for k in range(self.n)]) + 1)**2
return 0
# E(x)为g(x)对输入x的预测值和y的差
def _E(self, i):
return self._g(i) - self.Y[i]
#初始alpha
def _init_alpha(self):
# 外层循环首先遍历所有满足0
index_list = [i for i in range(self.m) if 0 < self.alpha[i] < self.C]
# 否则遍历整个训练集
non_satisfy_list = [i for i in range(self.m) if i not in index_list]
index_list.extend(non_satisfy_list)
for i in index_list:
if self._KKT(i):
continue
E1 = self.E[i]
# 如果E2是+,选择最小的;如果E2是负的,选择最大的
if E1 >= 0:
j = min(range(self.m), key=lambda x: self.E[x])
else:
j = max(range(self.m), key=lambda x: self.E[x])
return i, j
#选择alpha参数
def _compare(self, _alpha, L, H):
if _alpha > H:
return H
elif _alpha < L:
return L
else:
return _alpha
#训练
def fit(self, features, labels):
'''
input:features(ndarray):特征
label(ndarray):标签
'''
self.init_args(features, labels)
for t in range(self.max_iter):
i1, i2 = self._init_alpha()
# 边界
if self.Y[i1] == self.Y[i2]:
L = max(0, self.alpha[i1]+self.alpha[i2]-self.C)
H = min(self.C, self.alpha[i1]+self.alpha[i2])
else:
L = max(0, self.alpha[i2]-self.alpha[i1])
H = min(self.C, self.C+self.alpha[i2]-self.alpha[i1])
E1 = self.E[i1]
E2 = self.E[i2]
# eta=K11+K22-2K12
eta = self.kernel(self.X[i1], self.X[i1]) + self.kernel(self.X[i2], self.X[i2]) - 2*self.kernel(self.X[i1], self.X[i2])
if eta <= 0:
continue
alpha2_new_unc = self.alpha[i2] + self.Y[i2] * (E2 - E1) / eta
alpha2_new = self._compare(alpha2_new_unc, L, H)
alpha1_new = self.alpha[i1] + self.Y[i1] * self.Y[i2] * (self.alpha[i2] - alpha2_new)
b1_new = -E1 - self.Y[i1] * self.kernel(self.X[i1], self.X[i1]) * (alpha1_new-self.alpha[i1]) - self.Y[i2] * self.kernel(self.X[i2], self.X[i1]) * (alpha2_new-self.alpha[i2])+ self.b
b2_new = -E2 - self.Y[i1] * self.kernel(self.X[i1], self.X[i2]) * (alpha1_new-self.alpha[i1]) - self.Y[i2] * self.kernel(self.X[i2], self.X[i2]) * (alpha2_new-self.alpha[i2])+ self.b
if 0 < alpha1_new < self.C:
b_new = b1_new
elif 0 < alpha2_new < self.C:
b_new = b2_new
else:
# 选择中点
b_new = (b1_new + b2_new) / 2
# 更新参数
self.alpha[i1] = alpha1_new
self.alpha[i2] = alpha2_new
self.b = b_new
self.E[i1] = self._E(i1)
self.E[i2] = self._E(i2)
def predict(self, data):
'''
input:data(ndarray):单个样本
output:预测为正样本返回+1,负样本返回-1
'''
r = self.b
for i in range(self.m):
r += self.alpha[i] * self.Y[i] * self.kernel(data, self.X[i])
return 1 if r > 0 else -1
#********* End *********#
#encoding=utf8
from sklearn.svm import SVR
def svr_predict(train_data,train_label,test_data):
'''
input:train_data(ndarray):训练数据
train_label(ndarray):训练标签
output:predict(ndarray):测试集预测标签
'''
#********* Begin *********#
svr = SVR(kernel='rbf',C=100,gamma= 0.001,epsilon=0.1)
svr.fit(train_data,train_label)
predict = svr.predict(test_data)
#********* End *********#
return predict