1、Foreground-Aware Relation Network for Geospatial Object Segmentation inHigh Spatial Resolution Remote Sensing Imagery
前后背景分割
https://openaccess.thecvf.com/content_CVPR_2020/papers/Zheng_Foreground-Aware_Relation_Network_for_Geospatial_Object_Segmentation_in_High_Spatial_CVPR_2020_paper.pdf
2、Effective Use of Dilated Convolutions for Segmenting SmallObjectInstancesin Remote Sensing Imagery
空洞卷积膨胀系数由大到小
https://arxiv.org/ftp/arxiv/papers/1709/1709.00179.pdf
3、Improved Road Connectivity by Joint Learning of Orientation and Segmentation
基于方向向量,道路分割方向学习
https://anilbatra2185.github.io/papers/RoadConnectivityCVPR2019.pdf
4、DiResNet: Direction-aware Residual Network for Road Extraction in VHR Remote Sensing Images
对路网方向进行分类,道路分割方向学习+4个loss
https://arxiv.org/pdf/2005.07232v2.pdf
5、SCAttNet: Semantic Segmentation Network with Spatial and Channel Attention Mechanism for High-Resolution Remote Sensing Images
通道注意力+空间注意力 CBAM
https://arxiv.org/pdf/1912.09121v2.pdf
6、Road Segmentation for Remote Sensing Images using Adversarial Spatial Pyramid Networks
利用GAN网络用于遥感分割完成数据集迁移学习
https://arxiv.org/pdf/2008.04021v1.pdf
7、HeatNet: Bridging the Day-Night Domain Gap in SemanticSegmentation with Thermal Images
利用白天的可见光和红外分割数据集模型泛化到白天、夜间可见光和红外的多模泛化模型,进行白天迁移到白天和夜间的学习
https://arxiv.org/pdf/2003.04645.pdf
8、MFNet: Towards Real-Time Semantic Segmentation for AutonomousVehicles with Multi-Spectral Scenes
实时的利用可见光和红外数据集完成分割的网络(两个encoder分别输入可见光和红外图像,进行特征融合,一个decoder得到分割结果图)
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8206396&tag=1
9、Distilling Image Dehazing With Heterogeneous Task Imitation
利用自编码器(pixtopix)作为teacher网络,去教一个去雾网络(特色为残差空间通道注意力机制),teacher网络利用loss对student网络进行约束。
https://openaccess.thecvf.com/content_CVPR_2020/papers/Hong_Distilling_Image_Dehazing_With_Heterogeneous_Task_Imitation_CVPR_2020_paper.pdf
10、Taking A Closer Look at Domain Shift:Category-level Adversaries for Semantics Consistent Domain Adaptation
在domain adaptation中进行类别的特征对齐,对于类别加权
https://arxiv.org/pdf/1809.09478.pdf
11、DCAN: Dual Channel-wise Alignment Networks for Unsupervised Scene Adaptation
https://arxiv.org/pdf/1804.05827v1.pdf
12、Unsupervised object detection via LWIR/RGB translation
cycleGAN进行LWIR和RGB间的图像生成,并利用检测框的ROI区域进行L1 loss约束,对检测区域的loss约束进行加强。
https://openaccess.thecvf.com/content_CVPRW_2020/papers/w6/Abbott_Unsupervised_Object_Detection_via_LWIRRGB_Translation_CVPRW_2020_paper.pdf
13、FusionGAN: A generative adversarial network forinfrared and visible image fusion
利用GAN网络进行图像融合
https://www.researchgate.net/publication/327393843_FusionGAN_A_generative_adversarial_network_for_infrared_and_visible_image_fusion
14、Bidirectional Learning for Domain Adaptation of Semantic Segmentation
https://arxiv.org/pdf/1904.10620v1.pdf
15、ESL: Entropy-guided Self-supervised Learningfor Domain Adaptation in Semantic Segmentation
https://arxiv.org/pdf/2006.08658.pdf
16、Meta-DRN: Meta-Learning for 1-Shot ImageSegmentation
https://arxiv.org/pdf/2008.00247.pdf
17、Unsupervised Domain Adaptation for SemanticSegmentation via Class-Balanced Self-Training
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yang_Zou_Unsupervised_Domain_Adaptation_ECCV_2018_paper.pdf
18、Multimodal Machine Learning: A Survey and Taxonomy
https://arxiv.org/pdf/1705.09406
19、A Survey on Semi-, Self- and Unsupervised Learning for Image Classification
https://arxiv.org/pdf/2002.08721v3.pdf
20、Image Segmentation Using Deep Learning: A Survey
https://arxiv.org/pdf/2001.05566.pdf
21、Unsupervised Domain Adaptation in Semantic Segmentation: a Review
https://arxiv.org/pdf/2005.10876.pdf
22、A survey of loss functions for semantic segmentation
https://arxiv.org/pdf/2006.14822.pdf
23、A Survey on Instance Segmentation: State of the art
https://arxiv.org/ftp/arxiv/papers/2007/2007.00047.pdf
24、Evolution of Image Segmentation using Deep Convolutional Neural Network: A Survey
https://arxiv.org/pdf/2001.04074.pdf
25、Knowledge Distillation: A Survey
https://arxiv.org/pdf/2006.05525.pdf
26、Self-Supervised Learning for Stereo Matching with Self-Improving Ability
http://arxiv.org/pdf/1709.00930v1
27、Self-Supervised Co-Part Segmentation
https://arxiv.org/abs/1905.01298
28、Self-Supervised Difference Detection for Weakly-Supervised Semantic Segmentation
https://arxiv.org/pdf/1911.01370.pdf
29、Mix-and-Match Tuning for Self-Supervised Semantic Segmentation
https://arxiv.org/pdf/1712.00661.pdf
30、A U-Net Based Discriminator for Generative Adversarial Networks
将判别器改为UNet型的网络
https://arxiv.org/pdf/2002.12655v1.pdf
31、DDcGAN: A Dual-Discriminator Conditional Generative Adversarial Network for Multi-Resolution Image Fusion
https://ieeexplore.ieee.org/document/9031751
fusiongan双判别器
32、VIFB: A Visible and Infrared Image Fusion Benchmark
https://arxiv.org/pdf/2002.03322v2.pdf
https://arxiv.org/abs/2002.03322
可见光和红外图像融合的benchmark
33、MFF-GAN: An unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion
https://www.sciencedirect.com/science/article/pii/S1566253520303572
34、Infrared and visible image fusion based on target-enhanced multiscale transform decomposition
https://www.sciencedirect.com/science/article/pii/S0020025519308163
拉普拉斯金字塔图像融合
35、Infrared and visible image fusion via detail preserving adversarial learning
https://www.sciencedirect.com/science/article/pii/S1566253519300314
fusiongan加入感知loss和边缘增强loss
36、DRF: Disentangled Representation for Visible and Infrared Image Fusion
https://ieeexplore.ieee.org/document/9345717
scene表示和attribute表示两种特征空间融合
37、AttentionFGAN: Infrared and Visible Image Fusionusing Attention-based Generative AdversarialNetworks
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9103116&tag=1
38、ADVERSARIALLY LEARNED INFERENCE
https://arxiv.org/pdf/1606.00704.pdf
39、Multigrained Attention Network for Infrared and Visible Image Fusion
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9216075
40、MDLatLRR: A Novel Decomposition Method for Infrared and Visible Image Fusion
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9018389
41、A Generative Adversarial Network for Infrared and Visible Image Fusion Based on Semantic Segmentation
https://doaj.org/article/3cb33f7431e9479b8916bedc6600103b
将mask作为先验加入融合的GAN中
42、Infrared and Visible Image Fusion via Texture Conditional Generative Adversarial Network
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9335976
43、RFN-Nest: An end-to-end residual fusion network for infrared and visible images
https://arxiv.org/pdf/2103.04286.pdf
44、Image fusion based on generative adversarial network consistent with perception
https://www.sciencedirect.com/science/article/pii/S1566253521000439
45、Generalizing to Unseen Domains: A Survey on Domain Generalization
https://arxiv.org/abs/2103.03097v3
46、Scene Text Detection and Recognition: The Deep Learning Era
https://arxiv.org/pdf/1811.04256.pdf
47、FEANet: Feature-Enhanced Attention Network for RGB-Thermal
Real-time Semantic Segmentation
https://arxiv.org/abs/2110.08988