全连接神经网络手写数字识别应用开发完整版

generateds.py用于将图片文件写为tfrecord数据格式文件,并提供了读取tfrecord文件,打乱以及获取一个批次tfrecord文件

# coding:utf-8
import tensorflow as tf
import numpy as np
from PIL import Image
import os

image_train_path = './mnist_data_jpg/mnist_train_jpg_60000/'
label_train_path = './mnist_data_jpg/mnist_train_jpg_60000.txt'
tfRecord_train = './data/mnist_train.tfrecords'
image_test_path = './mnist_data_jpg/mnist_test_jpg_10000/'
label_test_path = './mnist_data_jpg/mnist_test_jpg_10000.txt'
tfRecord_test = './data/mnist_test.tfrecords'
data_path = './data'
resize_height = 28
resize_width = 28


def write_tfRecord(tfRecordName, image_path, label_path):
    writer = tf.python_io.TFRecordWriter(tfRecordName)
    num_pic = 0
    # 打开一个一个记录图片名称和标签的txt文件
    f = open(label_path, 'r')
    # 获取这个txt文件中的所以内容
    contents = f.readlines()  # contents为一个列表
    f.close()
    for content in contents:
        # content为图片的路径以及标签
        value = content.split()
        img_path = image_path + value[0]
        # 用PIL中image读取图片得到img对象
        img = Image.open(img_path)
        # 并用img自带函数转为二进制
        img_raw = img.tobytes()
        # 将标签转为列向量
        labels = [0] * 10
        labels[int(value[1])] = 1
        # 写tfrecord文件的标准模式
        example = tf.train.Example(features=tf.train.Features(feature={
            'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])),
            'label': tf.train.Feature(int64_list=tf.train.Int64List(value=labels))
        }))
        # 写tfrecord文件
        writer.write(example.SerializeToString())
        num_pic += 1
        # 每隔1000张图输出一次
        if num_pic % 1000 == 0:
            print("the number of picture:", num_pic)

    writer.close()   # 写操作完成
    print("write tfrecord successful")


def generate_tfRecord():
    # 首先判断保存tfrecords文件目录
    isExists = os.path.exists(data_path)
    # 如果路径不存在,创建文件
    if not isExists:
        os.makedirs(data_path)
        print('The directory was created successfully')
    else:
        print('directory already exists')
    # 分别创建测试集和训练集的tfrecord文件
    write_tfRecord(tfRecord_train, image_train_path, label_train_path)
    write_tfRecord(tfRecord_test, image_test_path, label_test_path)


def read_tfRecord(tfRecord_path):
    # 运用队列的方法读取tfrecord文件数据
    filename_queue = tf.train.string_input_producer([tfRecord_path], shuffle=True)
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(serialized_example,
                                       features={
                                           'label': tf.FixedLenFeature([10], tf.int64),
                                           'img_raw': tf.FixedLenFeature([], tf.string)
                                       })
    # 使用tensorflow自带方法读取图片
    img = tf.decode_raw(features['img_raw'], tf.uint8)
    # 将图片一维化排列
    img.set_shape([784])
    # 将像素点归一化
    img = tf.cast(img, tf.float32) * (1. / 255)
    # 读出标签
    label = tf.cast(features['label'], tf.float32)
    return img, label


def get_tfrecord(num, isTrain=True):
    # 获取tfrecord数据
    # 第二个输入参数代表训练集或测试集
    if isTrain:
        tfRecord_path = tfRecord_train
    else:
        tfRecord_path = tfRecord_test
    # 读取图片
    img, label = read_tfRecord(tfRecord_path)
    # 取出批次并打乱顺序
    img_batch, label_batch = tf.train.shuffle_batch([img, label],
                                                    batch_size=num,
                                                    num_threads=2,
                                                    capacity=1000,
                                                    min_after_dequeue=700)
    return img_batch, label_batch


def main():
    generate_tfRecord()


if __name__ == '__main__':
    main()

forward.py 文件用于定义神经网络结构

import tensorflow as tf

INPUT_NODE = 28 * 28
OUTPUT_NODE = 10
LAYER1_NODE = 500


def get_weight(shape, regularizer):
    # 定义全连接的权重,用正态分布随机数初始化
    w = tf.Variable(tf.truncated_normal(shape, stddev=0.1))
    # 添加正则化
    if regularizer != None:
        tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
    return w


def get_bias(shape):
    # 添加偏置层,使用0初始化
    b = tf.Variable(tf.zeros(shape))  
    return b
	
def forward(x, regularizer):
    # 全连接向前传播
    # w1为 INPUT_NODE * LAYER1_NODE
    # 第一层有500个神经元
    w1 = get_weight([INPUT_NODE, LAYER1_NODE], regularizer)
    b1 = get_bias([LAYER1_NODE])
    # 计算经过第一层输出,激活函数relu
    y1 = tf.nn.relu(tf.matmul(x, w1) + b1)
    # 获取第二层的全连接权重,添加偏置层
    w2 = get_weight([LAYER1_NODE, OUTPUT_NODE], regularizer)
    b2 = get_bias([OUTPUT_NODE])
    # 计算第二层输出
    y = tf.matmul(y1, w2) + b2
    return y

backward.py用来启动训练过程,训练模型

import tensorflow as tf
import mnist_forward
import os
import mnist_generateds

BATCH_SIZE = 200
LEARNING_RATE_BASE = 0.1
LEARNING_RATE_DECAY = 0.99
REGULARIZER = 0.0001
STEPS = 50000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH="./model/"
MODEL_NAME="mnist_model"
train_num_examples = 60000


def backward():
    # 输入占位 28*28个输入
    x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
    # 输出占位 10个输出
    y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
    # 给出三层图的结果
    y = mnist_forward.forward(x, REGULARIZER)
    # 定义步长计数器
    global_step = tf.Variable(0, trainable=False) 
    # 交叉熵代价函数
    ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
    # 求平均得到最终的代价函数
    cem = tf.reduce_mean(ce)
    # 将代价函数添加偏置层
    loss = cem + tf.add_n(tf.get_collection('losses'))
    # 指数衰减学习率
    learning_rate = tf.train.exponential_decay(
        LEARNING_RATE_BASE,
        global_step,
        train_num_examples / BATCH_SIZE, 
        LEARNING_RATE_DECAY,
        staircase=True)
    # 梯度下降优化器
    train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)

    # 下面为滑动平均变量
    ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
    ema_op = ema.apply(tf.trainable_variables())
    with tf.control_dependencies([train_step, ema_op]):
        train_op = tf.no_op(name='train')

    # 保存模型
    saver = tf.train.Saver()
    # 获取一个批次的训练数据
    img_batch, label_batch = mnist_generateds.get_tfrecord(BATCH_SIZE, isTrain=True)#3
    # 启动图,开始计算
    with tf.Session() as sess:
        # 定义初始化操作
        init_op = tf.global_variables_initializer()
        # 运行这个初始化操作
        sess.run(init_op)
        # 定义ckpt文件,用来保存计算进度
        ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
        # 如果定位到ckpt文件存在,加载ckpt文件,读取训练参数
        if ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path)
		# 这两行可能与加载训练集的批次有关
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
        # 开始训练
        for i in range(STEPS):
            # 每次传入训练批次
            xs, ys = sess.run([img_batch, label_batch])
            # 运行图,计算每次的cost function
            _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
            if i % 1000 == 0:
                # 每隔1000次输出训练结果
                print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
                saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
        # 关闭cord
        coord.request_stop()
        coord.join(threads)


def main():
    backward()

if __name__ == '__main__':
    main()

test.py 将训练集图片用来测试正确率

#coding:utf-8
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import mnist_backward
import mnist_generateds
TEST_INTERVAL_SECS = 5
TEST_NUM = 10000

def test():
    with tf.Graph().as_default() as g:
        # 输入占位
        x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
        # 输出占位
        y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
        # 定义向前传播计算输出的图 第二个参数None代表
        y = mnist_forward.forward(x, None)

        # 下面为滑动平均模型
        ema = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
        ema_restore = ema.variables_to_restore()
        saver = tf.train.Saver(ema_restore)
		# 将计算的输出与标记的输出做比较,计算正确率
        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        # 从测试集中读取一批次数据,进行计算
        img_batch, label_batch = mnist_generateds.get_tfrecord(TEST_NUM, isTrain=False)

        while True:
            with tf.Session() as sess:
                # 读取ckpt数据
                ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
                if ckpt and ckpt.model_checkpoint_path:
                    saver.restore(sess, ckpt.model_checkpoint_path)
                    # 读取步长
                    global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
                    # 这里可能是声明批次的队列,加载训练数据
                    coord = tf.train.Coordinator()
                    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
                    # 加载训练数据
                    xs, ys = sess.run([img_batch, label_batch])#5
                    # 喂入测试集,开始测试
                    accuracy_score = sess.run(accuracy, feed_dict={x: xs, y_: ys})

                    print("After %s training step(s), test accuracy = %g" % (global_step, accuracy_score))

                    coord.request_stop()#6
                    coord.join(threads)#7

                else:
                    print('No checkpoint file found')
                    return
            time.sleep(TEST_INTERVAL_SECS)

def main():
    test()#8

if __name__ == '__main__':
    main()

app.py 程序用PIL读取并预处理图片,最后一张图喂入神经网络,计算预测数据

# coding:utf-8

import tensorflow as tf
import numpy as np
from PIL import Image
import mnist_backward
import mnist_forward


def restore_model(testPicArr):

    with tf.Graph().as_default() as tg:
        # 输入占位
        x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
        # 输出占位
        y = mnist_forward.forward(x, None)
        # 预测
        preValue = tf.argmax(y, 1)
        # 滑动模型
        variable_averages = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
        variables_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore)

        with tf.Session() as sess:
            # 加载ckpt文件
            ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)
                # 每一次喂入一张图
                preValue = sess.run(preValue, feed_dict={x: testPicArr})
                return preValue
            else:
                print("No checkpoint file found")
                return -1


def pre_pic(picName):
    # 使用PIL读取图片
    img = Image.open(picName)
    # 重新设置图片的尺寸
    reIm = img.resize((28, 28), Image.ANTIALIAS)
    im_arr = np.array(reIm.convert('L'))
    threshold = 50
    # 因为训练图片为黑底白字,需要转化为白底黑字
    # 并二值化处理
    for i in range(28):
        for j in range(28):
            im_arr[i][j] = 255 - im_arr[i][j]
            if (im_arr[i][j] < threshold):
                im_arr[i][j] = 0
            else:
                im_arr[i][j] = 255
    # 将二维图片一维化
    nm_arr = im_arr.reshape([1, 784])
    nm_arr = nm_arr.astype(np.float32)
    # 归一化
    img = np.multiply(nm_arr, 1.0 / 255.0)

    return nm_arr  # img


def application():
    print("start test")
    testNum = input("input the number of test pictures:")
    for i in range(int(testNum)):
        # 输入图片地址
        testPic = input("the path of test picture:")
        # 图片预处理
        testPicArr = pre_pic(testPic)
        # 输出预测数字
        preValue = restore_model(testPicArr)
        print("The prediction number is:", preValue)



def main():
    application()


if __name__ == '__main__':
    main()


你可能感兴趣的:(算法)