深度学习论文与资源的大列表!!!

【推荐】深度学习论文与资源大列表(论文、预训练模型、课程、图书、软件、应用、相关列表等)


摘要 

转自:爱可可-爱生活

A list of recent papers regarding deep learning and deep reinforcement learning. They are sorted by time to see the recent papers first. I will renew the recent papers and add notes to these papers.

You should find the papers and software with star flag are more important or popular.

Table of Contents

  • Papers

  • Model Zoo

  • Pretrained Model

  • Courses

  • Books

  • Software

  • Applications

  • Awesome Projects

Papers

  • 2017 year

    • deep learning

    • deep reinforcement learning

    • natural language process

  • 2016 year

    • deep learning

    • deep reinforcement learning

    • natural language process

  • 2015 year

  • 2014 year

  • 2013 year

  • 2012 year

  • 2011 year

  • 2010 year

  • before 2010 year

Model Zoo

  • 2012 | AlexNet | pdf | https://github.com/kratzert/finetune_alexnet_with_tensorflow |

  • 2013 | RCNN | arxiv | https://github.com/rbgirshick/rcnn |

  • 2014 | CGNA | arxiv | https://github.com/zhangqianhui/Conditional-Gans |

  • 2014 | DeepFaceVariant | pdf | https://github.com/joyhuang9473/deepid-implementation |

  • 2014 | GAN | arxiv | https://github.com/goodfeli/adversarial |

  • 2014 | GoogLeNet | pdf | https://github.com/google/inception |

  • 2014 | OverFeat | arxiv | https://github.com/sermanet/OverFeat |

  • 2014 | SPPNet | arxiv | https://github.com/yhenon/keras-spp |

  • 2014 | VAE | arxiv | https://github.com/dpkingma/nips14-ssl |

  • 2014 | VGGNet | arxiv | https://gist.github.com/ksimonyan/211839e770f7b538e2d8 |

  • 2015 | DCGAN | arxiv | https://github.com/carpedm20/DCGAN-tensorflow |

  • 2015 | DRAW | arxiv | https://github.com/ericjang/draw |

  • 2015 | Global And Local Attention | arxiv | https://github.com/giancds/tsf_nmt |

  • 2015 | FaceNet | arxiv | https://github.com/davidsandberg/facenet |

  • 2015 | Fast RCNN | arxiv | https://github.com/rbgirshick/fast-rcnn |

  • 2015 | Faster RCNN | arxiv | https://github.com/rbgirshick/py-faster-rcnn |

  • 2015 | FCNT | pdf | https://github.com/scott89/FCNT |

  • 2015 | Inception | arxiv | https://github.com/tensorflow/models/tree/master/inception |

  • 2015 | LAPGAN | arxiv | https://github.com/facebook/eyescream |

  • 2015 | NeuralGPU | arxiv | https://github.com/tensorflow/models/tree/master/neural_gpu |

  • 2015 | Pointer Net | arxiv | https://github.com/devsisters/pointer-network-tensorflow |

  • 2015 | ResNet | arxiv1 , arxiv2, arxiv3 | https://github.com/tensorflow/models/tree/master/resnet |

  • 2015 | Skip-Thought Vectors | pdf | https://github.com/tensorflow/models/tree/master/skip_thoughts |

  • 2015 | Transformer | arxiv | https://github.com/tensorflow/models/tree/master/transformer |

  • 2016 | Dp_sgd | arxiv | https://github.com/tensorflow/models/tree/master/differential_privacy |

  • 2016 | EnergyGAN | arxiv | https://github.com/buriburisuri/ebgan |

  • 2016 | Grad-CAM | arxiv | https://github.com/Ankush96/grad-cam.tensorflow |

  • 2016 | Im2txt | arxiv | https://github.com/tensorflow/models/tree/master/im2txt |

  • 2016 | InfoGAN | arxiv | https://github.com/buriburisuri/supervised_infogan |

  • 2016 | Multiple_teachers | arxiv | https://github.com/tensorflow/models/tree/master/differential_privacy |

  • 2016 | Neural Programmer | pdf | https://github.com/tensorflow/models/tree/master/neural_programmer |

  • 2016 | PCNN | arxiv | https://github.com/kundan2510/pixelCNN |

  • 2016 | Pix2Pix | arxiv | https://github.com/yenchenlin/pix2pix-tensorflow |

  • 2016 | PVANet | arxiv | https://github.com/sanghoon/pva-faster-rcnn |

  • 2016 | R-FCN | arxiv | https://github.com/Orpine/py-R-FCN |

  • 2016 | SeqGAN | pdf | https://github.com/LantaoYu/SeqGAN |

  • 2016 | SqueezeNet | arxiv | https://github.com/songhan/SqueezeNet-Deep-Compression |

  • 2016 | Swivel | arxiv | https://github.com/tensorflow/models/tree/master/swivel |

  • 2016 | SyntaxNet | arxiv | https://github.com/tensorflow/models/tree/master/syntaxnet |

  • 2016 | Textsum | | https://github.com/tensorflow/models/tree/master/textsum |

  • 2016 | VGNA | arxiv | https://github.com/Shuangfei/vgan |

  • 2017 | Learning to Remember Rare Events | pdf | https://github.com/tensorflow/models/tree/master/learning_to_remember_rare_events |

  • 2017 | SalGAN | arxiv | https://github.com/imatge-upc/saliency-salgan-2017 |

  • 2017 | WGAN | arxiv | https://github.com/Zardinality/WGAN-tensorflow |

Pretrained Model

  • Available pretrained word embeddings

  • Inception-v3 of imagenet

  • Dependency-Based Word Embeddings.

  • GloVe: Global Vectors for Word Representation

  • Model of the deep residual network used for cifar10

  • Pre-Trained Doc2Vec Models

  • Pre-trained word vectors 

    ⭐️
  • ResNet in TensorFlow Pretrain Model

  • TensorFlow VGG-16 pre-trained model

  • VGGNets for Scene Recognition

Courses

  • [Utah] Applied Computational Genomics Course at UU

  • [Stanford] CS231n: Convolutional Neural Networks for Visual Recognition

  • [CUHK] ELEG 5040: Advanced Topics in Signal Processing(Introduction to Deep Learning)

  • [Stanford] CS224n: Natural Language Processing with Deep Learning

  • [Oxford] Deep Learning by Prof. Nando de Freitas

  • [NYU] Deep Learning by Prof. Yann LeCun

  • [Berkeley] CS294: Deep Reinforcement Learning

  • [Berkeley] Stat212b:Topics Course on Deep Learning

  • [MIT] S094: Deep Learning for Self-Driving Cars

  • [CUHK] ELEG 5040: Advanced Topics in Signal Processing (Introduction to Deep Learning)

  • [Stanford] CS20SI: Tensorflow for Deep Learning Research

  • [Stanford] CS224n: Natural Language Processing with Deep Learning

  • [MIT] S191: Introduction to Deep Learning

  • [吴立德] 《深度学习课程》

  • [Oxford] Deep Learning Course

  • [David Silver] RL Course

  • [MIT] Practical Deep Learning For Coders

  • [Google] Udacity Deep Learning Online Course

Books

  • Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville, [zh]

  • Neural Networks and Deep Learning by Michael Nielsen

  • Deep Learning Tutorial by LISA lab, University of Montreal

  • 神经网络与深度学习.邱锡鹏

  • UFLDL Tutorial

  • Rules of Machine Learning: Best Practices for ML Engineering

  • Reinforcement Learning: An Introduction [code]

  • Reinforcement LearningState-of-the-Art

  • A Course in Machine Learning

  • 深度学习入门 by PaddlePaddle

  • TensorFlow For Machine Intelligence

  • First Contact With TensorFlow

  • Learning scikit-learn: Machine Learning in Python

Software

  • python

    • [Pylearn2] Theano-based deep learning libraries

    • [Blocks] Blocks is a framework that helps you build neural network models on top of Theano 

      ⭐️
    • [Lasagne] Lightweight library to build and train neural networks in Theano.

    • [Chainer] Chainer bridge the gap between algorithms and implementations of deep learning.

    • [ChainerRL] ChainerRL is a deep reinforcement learning library built on top of Chainer.

    • [DeepPy] DeepPy is a Pythonic deep learning framework built on top of NumPy.

    • [Deepnet] Deepnet: a GPU-based python implementation of deep learning algorithms.

    • [Deepgaze] Deepgaze: A computer vision library for human-computer interaction based on CNNs

    • [DeepQA] Tensorflow implementation of "A neural conversational model", a Deep learning based chatbot.

    • [DeepVideoAnalytics] Analyze videos & images, perform detections, index frames & detected objects, search by examples.

    • [Edward] Edward: A library for probabilistic modeling, inference, and criticism.

    • [Elephas] Distributed Deep learning with Keras & Spark.

    • [Gensim] Gensim: Deep learning toolkit implemented in python programming language intended for handling large text collections, using efficient algorithms.

    • [Hebel] Hebel: A library for deep learning with neural networks in Python using GPU acceleration with CUDA through PyCUDA.

    • [Keras] Keras: Deep Learning library for Theano and TensorFlow. 

      ⭐️
    • [Kur] Kur: Descriptive Deep Learning. 

      ⭐️
    • [Neon] Neon is Nervana's Python based Deep Learning framework.

    • [PyTorch] Tensors and Dynamic neural networks in Python with strong GPU acceleration. 

      ⭐️
    • [Scikit-Learn] scikit-learn: machine learning in Python. 

      ⭐️
    • [Skll] SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

    • [TensorFX] TensorFX is an end to end application framework to simplifies machine learning with TensorFlow

    • [Theano] Theano: Mathematical library in Python, maintained by LISA lab

  • C++

    • [MinPy] MinPy: Providing a high performing and flexible deep learning platform, by prototyping a pure NumPy interface above MXNet backend.

    • [Caffe] Caffe: Deep learning framework by the BVLC 

      ⭐️
    • [CNTK] CNTK:The Microsoft Cognitive Toolkit.

    • [DeepDetect] DeepDetect : Open Source Deep Learning Server & API

    • [DIGITS] NVIDIA DIGITS is a new system for developing, training and visualizing deep neural networks.

    • [DSSTNE] DSSTNE is an Amazon developed library for building Deep Learning (DL) machine learning (ML) models.

    • [PaddlePaddle] PaddlePaddle (PArallel Distributed Deep LEarning) is an easy-to-use, efficient, flexible and scalable deep learning platform.

    • [MXNet] MXNet: A flexible and efficient deep learning library for heterogeneous distributed systems with multi-language support 

      ⭐️
    • [Singa] Singa: Singa is an Apache Incubating project for developing an open source deep learning library.

    • [Tensorflow] Tensorflow: An open source software library for numerical computation using data flow graph by Google 

      ⭐️
    • [Tiny-dnn] Tiny-dnn is a C++11 implementation of deep learning.

  • Java

    • [CoreNLP] Stanford CoreNLP: A Java suite of core NLP tools.

    • [Deeplearning4J] Deeplearning4J: Neural Net Platform.

    • [Librec] LibRec: A Java Library for Recommender Systems.

    • [NeuralNetworks] This is a Java implementation of some of the algorithms for training deep neural networks.

    • [NewralNet] A lightweight, easy to use and open source Java library for experimenting with feed-forward neural nets and deep learning.

  • Scala

    • [BigDL] BigDL: Distributed Deep learning on Apache Spark.

  • Julia

    • [Knet] Knet: Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia.

    • [Mocha] Mocha is a Deep Learning framework for Julia, inspired by the C++ framework Caffe.

  • Js

    • [Keras-js] Run Keras models (tensorflow backend) in the browser, with GPU support.

    • [Neurojs] A javascript deep learning and reinforcement learning library.

  • Matlab

    • [MatConvNet] MatConvNet: CNNs for MATLAB

  • Lua

    • [OpenNMT] OpenNMT: Open-Source Neural Machine Translation

    • [Torch7] Torch7: Deep learning library in Lua, used by Facebook and Google Deepmind 

      ⭐️
  • Php

    • [PHP-ML] PHP-ML - Machine Learning library for PHP

Applications

  • pytorch

    • A fast and differentiable QP solver for PyTorch.

    • A PyTorch Implementation of Single Shot MultiBox Detector.

    • A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing

    • Comprehensive Data Augmentation and Sampling for Pytorch

    • CNNs for Sentence Classification in PyTorch

    • Deep Q-Learning Network in pytorch

    • Fast Neural Style for Image Style Transform by Pytorch

    • Highway networks implemented in PyTorch.

    • OpenNMT: Open-Source Neural Machine Translation in PyTorch 

      ⭐️
    • PyTorch implementation of Fully Convolutional Networks

    • PyTorch implementation of Global Vectors for Word Representation

    • PyTorch implementation of the Value Iteration Networks

    • Pytorch Negative Sampling Loss

    • Pytorch Poetry Generation

    • Sequence to Sequence Models with PyTorch

    • SSD: Single Shot MultiBox Object Detector, in PyTorch

    • t-SNE experiments in pytorch

    • YOLOv2 in PyTorch

  • theano

    • CNN-yelp-challenge-2016-sentiment-classification

    • Deep Neural Network for Sentiment Analysis on Twitter

    • Implementations of many popular deep learning models in Theano+Lasagne

  • tensorflow

    • A framework for developing and evaluating reinforcement learning algorithms

    • A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summarization, Conversational Modeling, Image Captioning, and more.

    • An implementation of Pix2Pix in Tensorflow for use with frames from films

    • A Practical Guide for Debugging TensorFlow Codes

    • A set of Deep Reinforcement Learning Agents implemented in Tensorflow. 

      ⭐️
    • Aspect Based Sentiment Analysis using End-to-End Memory Networks

    • A tensorflow implementation of "Deep Convolutional Generative Adversarial Networks" 

      ⭐️
    • A TensorFlow implementation of Baidu's DeepSpeech architecture

    • DeepColor: Automatic coloring and shading of manga-style lineart

    • Deep Learning based Python Library for Stock Market Prediction and Modelling

    • Deepnlp:Deep Learning NLP Pipeline implemented on Tensorflow

    • Embedding Watermarks into Deep Neural Networks

    • Fast Multi(Interpolative) Style Transfer

    • Fast PixelCNN++: speedy image generation

    • Fully differentiable deep-neural decision forest in tensorflow

    • GA3C: Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU

    • Implementation of Generative Adversarial Networks, for Audio.

    • Interactive, node-by-node debugging and visualization for TensorFlow 

      ⭐️
    • Machine Learning on Sequential Data Using a Recurrent Weighted Average

    • Metasploit for machine learning.

    • Multilabel time series classification with LSTM

    • Neural Relation Extraction implemented with LSTM in TensorFlow

    • PixelVAE with or without regularization

    • PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation 

      ⭐️
    • Realistic Handwriting with Tensorflow

    • Real-time Joint Semantic Reasoning for Autonomous Driving

    • Self-Driving Car Engineer Nanodegree

    • Sequence-to-Sequence Grapheme-to-Phoneme toolkit

    • Simple Recommender System using Denoising AutoEncoder, implemented using TensorFlow

    • SSD in TensorFlow: Traffic Sign Detection and Classification

    • Tensorflow implementation of fast neural style transfer

    • TensorFlow on iOS demo

    • TensorFlowOnSpark

    • Tensorflow port of Image-to-Image Translation with Conditional Adversarial Nets 

      ⭐️
    • Tensorflow Tutorial files and Implementations of various Deep NLP and CV Models

    • Tutorials for deep learning

    • 使用TensorFlow实现的Sequence to Sequence的聊天机器人模型

    • Udacity SDC: Vehicle Detection 

      ⭐️
  • Keras

    • Embedding Watermarks into Deep Neural Networks

    • Experimental implementation of novel neural network structures

    • keras-emoji-embeddings

    • Wasserstein DCGAN in Tensorflow/Keras

Awesome Projects

  • 15 AI and Machine Learning Events

  • Awesome Adversarial Machine Learning

  • Awesome-Caffe

  • Awesome Deep Learning

  • Awesome Deep learning papers and other resources

  • Awesome Deep Vision

  • Awesome - Most Cited Deep Learning Papers

  • Awesome Public Datasets

  • Awesome PyTorch 

    ⭐️
  • Awesome Reinforcement Learning

  • Awesome Robotics

  • Awesome Sentiment Analysis

  • Awesome TensorFlow 

    ⭐️
  • Chainer Info

  • Collection of generative models, e.g. GAN, VAE in Tensorflow, Keras, and Pytorch 

    ⭐️
  • Collection of reinforcement learners implemented in python.

  • Datasets, Transforms and Models specific to Computer Vision

  • Deep Learning Papers Reading Roadmap

  • Machine Learning Videos

  • Machine Learning From Scratch

  • Paper list of multi-agent reinforcement learning (MARL)

  • SCODE Word Embeddings using Substitute Words

  • Summaries and notes on Deep Learning research papers

  • The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch 

    ⭐️
  • Various math-related things in Python code

  • 用于对话系统的中英文语料


原文链接:

http://weibo.com/1402400261/EAvRzdi5C?from=page_1005051402400261_profile&wvr=6&mod=weibotime&type=comment#_rnd1489922968669


链接:

https://github.com/endymecy/awesome-deeplearning-resources

你可能感兴趣的:(深度学习,深度学习)